Dec 2005

GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

Marks for each question are shown in brackets.

1.	(a) Define the specific heat capacity of a fluid.	(2)
	(b) Water flows through a heater at the rate of 2700 litre/h. It enters the heater at a temperature of 16°C and leaves at a temperature of 83°C.	
	Calculate the rate at which heat energy is transferred to the water in kW.	(5)
	Note: specific heat capacity of water = 4.184 kJ/kgK 1 m ³ of water has a mass of 1 tonne	
2.	(a) State the THREE modes of heat transfer.	(3)
	(b) Describe EACH of the modes stated in Q2(a).	(6)
3.	A steel ball has a diameter of 50.25mm at a temperature of 500°C.	
	Calculate the temperature at which the ball will just drop through a hole of 50mm.	(6)
	<i>Note:</i> coefficient of linear expansion of steel = $0.000012/$ °C	
4.	(a) Define Boyle's Law for a perfect gas.	(2)
	(b) A hot air balloon contains 1200 litres of a perfect gas at a pressure and temperature of 1.5 bar and 14°C respectively. The temperature of the gas rises to 62°C at constant pressure.	
	Calculate EACH of the following:	
	(i) the increase in the volume of the balloon in m^3 ;	(4)
	(ii) the mass of gas in the balloon.	(4)
	Note: for the gas $R = 0.25 k J/kg K$	

5. (a) Define EACH of the following:

(i)	the higher calorific value of a fuel;	(3)
(ii)	the lower calorific value of a fuel.	(3)

- (b) State the TWO main elements of a ship's fuel. (2)
- 6. A six cylinder two-stroke single acting diesel engine has a bore of 900mm, a stroke of 1300mm and runs at 120 rev/min. The effective brake torque is 700kNm, the mechanical efficiency is 94% and the brake specific fuel consumption is 0.24kg/kWh.

Calculate EACH of the following:

used as electrical insulators.

8.

(a)	the brake power;	(3)
(b)	the indicated power;	(3)
(c)	the indicated mean effective pressure in bar.	(4)

7. (a) With reference to an electric circuit, define EACH of the following terms:

	(i)	a conductor;	(2)
	(ii)	an insulator.	(2)
(b)	Stat	e TWO materials commonly used for electrical conductors and TWO commonly	

(4)

Calculate EACH of the following for a 100W, 250V electric filament lamp:

(a)	the operating resistance;	(4)
(b)	the operating current.	(3)

9.	A two-core cable is 500m long and is fed at one end from a 250V supply.	
	Load currents are taken at points along the cable as follows:	
	10A at point A, 100m from the supply end 15 A at point B, 200m from the supply end 20A at point C, 500m from the supply end	
	(a) Draw a circuit diagram of this arrangement and show the current in EACH section of the cable.	(4)
	(b) Calculate the voltage at EACH load point.	(6)
	Note: resistance of cable is 0.02 ohm per 100m.	
10.	A coil of copper wire at 15°C takes a current of 2.5A from a 100V supply. After a period of time the current falls to 2A for the same supply voltage.	
	Calculate the temperature rise of the coil.	(10)
	<i>Note:</i> temperature coefficient of resistance of copper - $0.00426/^{\circ}C$ at $0^{\circ}C$	
11.	A conductor of 12.5mm diameter has an effective length of 600mm when carrying a current of 25 A at right angles to a magnetic field. The force on the conductor is 24N.	
	Calculate EACH of the following:	
	(a) the flux density;	(3)
	(b) the magnetic flux.	(3)
12.	Sketch diagrams showing how magnetic flux would be distributed around EACH of the following:	
	(a) a horseshoe or U-shaped magnet;	(3)
	(b) two bar magnets lying parallel to each other, a short distance apart, with their north poles facing opposite directions;	(3)

(c) two bar magnets lying parallel to each other, a short distance apart, with their north poles facing the same direction. (3)