July 2005

GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

Marks for each question are shown in brackets.

1.	(a) Define a fuel.	(2)
	(b) List the types of fuel available.	(3)
	(c) State TWO examples of EACH type of fuel listed in Q1 (b).	(3)
2.	A mass of 1kg of hydrogen occupies a volume of $11.2m^3$ at a pressure and temperature of 1 bar and -3°C respectively. Calculate the value of the characteristic gas constant.	(7)
3.	A four cylinder, four-stroke engine has a bore of 76mm and a stroke of 125 mm. The brake power is 14.8kW at 1500 rev/min. The mechanical efficiency is 85% and the fuel consumption is 4.36kg of oil per hour.	
	Calculate EACH of the following:	
	(a) the indicated mean effective pressure in bar;	(6)
	(b) the brake thermal efficiency;	(3)
	(c) the brake specific fuel consumption.	(2)
	<i>Note:</i> calorific value of the $oil = 42MJ/kg$	
4.	(a) Describe, with the aid of a sketch, a mercury in glass thermometer.	(6)
	(b) State the factors that determine the range that a liquid in glass thermometer operates over.	(3)
5.	A steel component, of mass 10kg, is cooled from a temperature of 450°C by being completely immersed in a tank containing 4kg of oil at a temperature of 15°C.	
	Calculate the final temperature of the oil and the steel component, assuming that the heat losses are negligible.	(8)
	Note; specific heat capacity of steel = 0.48 kJ/kgK	

specific heat capacity of $oil = 1.8 \ kJ/kgK$

6.	In a vapour compression refrigeration plant, state the primary function of EACH of the			
	following:			
	(a) the condenser;	(2)		
	(b) the expansion valve;	(3)		
	(c) the evaporator.	(2)		
7.	A battery consists of four cells in parallel each having an emf of 1.5V and an internal resistance of 0.6 Ω . Calculate EACH of the following:			
	(a) the current flowing if connected to a device of 2.6 Ω resistance;	(5)		
	(b) the terminal voltage;	(3)		
	(c) the current in one cell.	(2)		
8.	(a) Derive the power formula in terms of voltage and resistance.	(4)		
	(b) A ship's oil heater has a power rating of 2.88kW.			
	Calculate the electrical energy used in MJ when it is switched on for two hours.	(3)		
9:	Describe, with the aid of a labelled sketch, the operation of a moving coil instrument.	(10)		
10.	(a) State Faraday's Law of electromagnetic induction.	(3)		
	(b) A magnetic flux of 4mWb is produced by a current carrying coil having 2000 turns. T current direction is completely reversed in one-tenth of a second.	he		
	Calculate the average emf induced in the coil.	(5)		
11.	A coil of copper wire at a temperature of 15° C has a resistance of 40Ω . Calculate the increase in the resistance when the temperature rises to 65° C,	(7)		
	Note; the temperature coefficient of copper at $0^{\circ}C = 0.00426/^{\circ}C$			

12. (a) State the essential properties of EACH of the following:

(i)	an electrical conductor;	(2)
(ii)	an electrical insulator	(2)

(ii)	an electrical insulator.	(2)
------	--------------------------	-----

(b) State TWO examples of materials used in EACH case in Q 12(a). (4)