# Apr 2005

(9)

(2)

(5)

(2)

## **GENERAL ENGINEERING SCIENCE II**

### **Attempt ALL questions**

## Marks for each question are shown in brackets.

1. A solid cast iron sphere of 250mm diameter has 2MJ of heat energy transferred to it.

Calculate the increase in the diameter in mm.

*Note: for cast iron:* 

density = 7200 kg/m<sup>3</sup> specific heat capacity = 0.54 kJ/kgK coefficient of linear expansion =  $1.2 \times 10^{-5}$ /°C volume of a sphere =  $\pi d^3/6$ 

2. (a) Define Charles' Law for a perfect gas.

(b) Air at a pressure and volume of 50kN/m<sup>2</sup> gauge and 3.25m<sup>3</sup> respectively is compressed at constant temperature to a gauge pressure of 4 bar. The atmospheric pressure is 1 bar.

Calculate the final volume.

## 3. Methanol ( $CH_3OH$ ) is completely burned in 25% excess air.

| Calculate the mass of methanol burned when 50kg of air is supplied. |                                                         |                      |               |             |  |
|---------------------------------------------------------------------|---------------------------------------------------------|----------------------|---------------|-------------|--|
| Note:                                                               | relative atomic masses:<br>air contains 23% oxygen by m | carbon = 12,<br>pass | hydrogen = 1, | oxygen = 16 |  |

## 4. (a) Explain the term *combustion*.

- (b) With reference to internal combustion engines, describe the effect of supplying EACH of the following:
  - (i) inadequate air; (3)
  - (ii) excess air. (3)

5. Define EACH of the following terms and state the formula for calculating the values of such:

| (a) | indicated power;                                                                                                              | (3) |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-----|
| (b) | brake power;                                                                                                                  | (2) |
| (c) | cooling water power;                                                                                                          | (2) |
| (d) | exhaust gas power.                                                                                                            | (2) |
|     |                                                                                                                               |     |
| (a) | State the condition of the refrigerant fluid at EACH of the main points of the simple vapour compression refrigeration cycle. | (4) |
| (b) | State the essential property of a refrigeration fluid and THREE other desirable properties.                                   | (4) |
|     |                                                                                                                               |     |

7. The resistance of a 240V tungsten filament lamp at its working temperature of 2000°C is 1000 ohms.

Calculate the maximum initial current when the lamp is switched on at a room temperature of  $15^{\circ}$ C. (10)

*Note:* for tungsten  $\alpha_o = 0.005 / {}^{\circ}C$ .

6.

8. A battery of e.m.f. 12V and internal resistance  $0.2\Omega$  is connected across the terminals XY as shown in Fig Q8.

Calculate EACH of the following:

- (a) the total resistance of the circuit; (4)
- (b) the current flowing in the  $2.9\Omega$  resistor;
- (c) the potential difference across the 5.1  $\Omega$  resistor.



Fig Q8

9. With reference to a moving coil meter, explain EACH of the following terms, describing how the torque is produced:

| (a) | deflecting or driving torque; | (3) |
|-----|-------------------------------|-----|
| (b) | restraining torque;           | (3) |
| (c) | damping torque.               | (3) |

- 10. (a) State the THREE main effects of an electric current. (3)
  (b) State TWO practical examples of EACH effect in Q 10(a). (6)
- Sketch and label an electrical circuit diagram that contains a battery of cells with an internal resistance, a switch, short circuit protection, two lamps in parallel and a device for dimming the lamps.

(4)

(2)

12. A conductor 350mm long carries a current of 10A and is at right angles to a magnetic field lying between two circular pole faces each of 60mm radius. The total flux between the pole faces is 0.5mWb.

Calculate the force exerted on the conductor.

(6)