Dec 2004

(9)

GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

Marks for each question are shown in brackets.

1.	Define EACH of the following terms, stating ONE example of EACH:		
	(a)	sensible heat;	(2)
	(b)	enthalpy of fusion;	(3)
	(c)	enthalpy of evaporation.	(3)

2. A mass of 0.4kg of aluminium is heated to 200°C and then immersed in 1.6kg of water contained in a copper vessel having a mass of 0.24kg. The initial temperature of the water and copper is 12°C, the final temperature is 21.8°C and there are no heat losses.

Calculate the specific heat capacity of the aluminium.

Note: the specific heat capacity of copper = 0.39kJ/kgK the specific heat capacity of water = 4.17kJ/kgK

3. An oil fuel consists of 87% carbon and 13% hydrogen.

Calculate the minimum mass of air to completely burn 1kg of fuel.	(8)
---	-----

- *Note:* relative atomic masses: carbon= 12, oxygen = 16, hydrogen = 1 air contains 23% oxygen by mass
- 4. A perfect gas at an initial pressure, temperature and volume of 275kN/m², 185°C and 0.09m³ respectively is cooled at constant pressure until its temperature is 15°C.

Calculate EACH of the following:

(a)	the mass of the gas;	(3)
(b)	the final volume;	(3)
(c)	the heat rejected.	(4)

Note:
$$R = 0.29 k J/kgK$$
 $c = 1.005 k J/kgK$

5. An oil engine uses 0.225kg of oil per minute when developing a brake power of 30kW. The mechanical efficiency is 80%.		
	Calculate the specific fuel consumption for EACH of the following:	
	(a) on a brake power basis;	(3)
	(b) on an indicated power basis.	(5)
6.	(a) State a device used to counter the effect of expansion in long pipes due to temperature change.	(2)
	(b) A length of lead piping is 30m long when measured at a temperature of 15°C. After hot water has been flowing through it the temperature of the pipe is found to have been raised to 60°C.	
	Calculate the new length of the lead pipe.	(5)
	<i>Note:</i> the coefficient of linear expansion of lead = $0.000028^{\circ}C$	
7.	An electric fire operated from a 240V supply has a heating element comprising of two 30 ohm coils. The coils may be connected in series to give a low setting, or in parallel to give a high setting.	

Calculate EACH of the following:

(a)	the power output for the low setting;	(5)
(b)	the power output for the high setting.	(5)

8. A battery consists of 10 cells connected in series, each cell having an emf of 2V and an internal resistance of 0.05 ohm. The battery supplies a current of 5 amps to an electric motor.

Calculate EACH of the following:(a) the potential difference of the battery;

(b) the resistance of the electric motor. (3)

(5)

- 9. (a) State the THREE main effects of an electric current. (3)
 - (b) List TWO practical applications of EACH effect stated in Q9(a). (3)

A magnetising force of 8000At/m is applied to a ring of mean diameter 300mm by passing a current through a coil wound on the ring. The coil is uniformly wound and has 750 turns.		
Calc	ulate the current in the coil.	(6)
Desc	cribe, with the aid of a sketch, the <u>principle of operation</u> of a D.C. motor.	(10)
	•	
Calculate EACH of the following:		
(a)	the value of a shunt resistance required in order that the meter will be fully deflected when it is connected into a circuit carrying 1A;	(5)
(b)	the value of a multiplier to be fitted to enable the meter to be used as a voltmeter with a range of 0-50V.	(5)
	a cui Calc Desc A m 2.5n Calc (a)	 a current through a coil wound on the ring. The coil is uniformly wound and has 750 turns. Calculate the current in the coil. Describe, with the aid of a sketch, the <u>principle of operation</u> of a D.C. motor. A moving coil ammeter has a coil resistance of 5 ohms and is fully deflected when a current of 2.5mA flows through it. Calculate EACH of the following: (a) the value of a shunt resistance required in order that the meter will be fully deflected when it is connected into a circuit carrying 1A; (b) the value of a multiplier to be fitted to enable the meter to be used as a voltmeter with