Dec 2002

(10)

(6)

GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

Marks for each part question are shown in brackets

1. During a heat treatment process, a steel connecting rod of mass 20 kg is cooled from 600°C to 70°C by immersion in a tank of quenching oil. In cooling the rod, the oil temperature increases by 50° C.

Calculate the mass of oil in the tank.

Note: Specific Heat Capacities: Quenching oil: 1.9kJ/kg K Steel: 0.49kJ/kg K

2. An engine cylinder has a volume of 2.3 m^3 and contains gas at a pressure of 1.55 bar and a temperature of 20°C.

Calculate the mass of the gas in the cylinder.

Note: R *for the* gas = 0.256 kJ/kgK

- 3. (a) State what is meant by *combustion*. (1)
 - (b) List THREE conditions necessary for combustion to occur. (3)
 - (c) Calculate the mass of air needed to completely burn EACH of the following:

(i)	0.8 kg Carbon;	(3)
(ii)	0.15 kg Hydrogen.	(3)

Note: Relative atomic masses: Oxygen 16; Hydrogen 1; Carbon 12. Air contains 23% oxygen by mass.

4. The following results were obtained during an engine trial on a single acting, single cylinder two stroke engine:

Bore	150 mm	
Stroke	200 mm	
Engine speed	220 RPM	
Indicator diagram	11.5 mm	
Engine indicator	spring rating	50kN/m ² per mm

Calculate EACH of the following:

- (a) the indicated mean effective pressure; (2)
- (b) the indicated power.

(6)

5.	(a) S	State the meaning of EACH of the following terms:			
		 (i) Sensible heat; (ii) Enthalpy of evaporation/fusion. 	(2) (2)		
	(<i>b</i>)	A mass of 5 kg of ice at 0° C is heated until it is converted into liquid at 10° C.			
		Calculate the heat energy required to produce this change.	(6)		
	Note	: Specific heat capacity of water is 4.19kJ/kgK			
		The enthalpy of fusion for water is 330kJ/kgK.			
6.	State	SIX desirable properties of a refrigerant fluid.	(6)		
7.	A 5.8 force	ohm resistor is connected in series with a 4.1 ohm resistor across a battery of electromotive e 12 volts and internal resistance of 0.1 ohm.			
	(<i>a</i>)	Sketch the circuit diagram.	(4)		
	(<i>b</i>)	Calculate the current which flows in the circuit,	(4)		
8.	The resistance of a coil of wire at the start of a heat test is 300 Ω . when its temperature is 20°C. At the completion of the test the resistance is 340 Ω .				
	Calo	culate the temperature of the coil at the completion of the test.	(10)		
	Note	e: The temperature coefficient of resistance of the wire at $0^{\circ}C(a_0)$ is $0.005 \Omega/\Omega/^{\circ}C$.			
9.	(a)	With reference to an electric cell, explain the term <i>internal resistance</i> , stating the effect it has on the terminal voltage of the cell.	(5)		
	(b)	The e.m.f. of a cell is 1.5 V and its terminal voltage is 1.3 V when a current of 0.7 A i flowing.	S		
		Calculate the internal resistance of the cell.	(5)		
10.	(a)	State the meaning of the term magnetic flux.	(2)		
	(b)	An electric conductor of length 45m is moved at a velocity of $9m/s$ at 90° to a uniform magnifield. An e.m.f. of 0.12 V is induced in the conductor.	netic		
		Calculate the density of the magnetic field.	(4)		
11.	(a)	Describe, with the aid of a sketch, how torque is produced on the armature of a d.c. motor.	(6)		
	<i>(b)</i>	Explain the function of the commutator in a d.c. motor.	(3)		

- 12. A moving, coil test meter has a resistance of 14 Ω , and takes a current of 50 mA to produce full scale deflection.
 - (a) Explain, with the aid of circuit diagrams, how it can be adapted to measure a larger voltage value. (4)
 - (b) Calculate the values of additional resistance to extend its voltage measurement range to 12 V. (3)