## June 2002

## **GENERAL ENGINEERING SCIENCE II**

## Attempt ALL questions

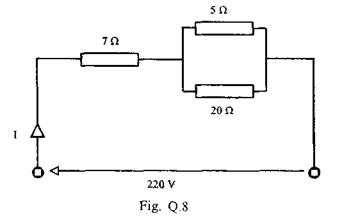
## Marks for each part question are shown in brackets

| <ul> <li>(b) State the unit in which heat energy is measured. (1)</li> <li>(c) Calculate the quantity of heat required to increase the temperature of 2.25 kg of a substance by 220°C. (5)</li> <li>Note: the specific heat capacity of the substance is 0.394 kJ/kg K.</li> </ul> |    |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| (5)                                                                                                                                                                                                                                                                                |    |  |  |
| Note: the specific heat capacity of the substance is $0.304 k I/ka K$                                                                                                                                                                                                              |    |  |  |
| Note. The specific near capacity of the substance is 0.394 kJ/kg K.                                                                                                                                                                                                                |    |  |  |
| 2. (a) Define Charles' Law for a perfect gas. (3)                                                                                                                                                                                                                                  |    |  |  |
| (b) The specific volume of a certain gas is $0.625 \text{m}^3/\text{kg}$ at $20^{\circ}\text{C}$ .                                                                                                                                                                                 |    |  |  |
| <ul> <li>(i) Determine the specific volume when the temperature is raised to 150<sup>C</sup>C, if the pressure remains constant.</li> <li>(ii) Determine the work done on the surroundings, per kilogram of gas, if the expansion was</li> </ul>                                   |    |  |  |
| carried out at a pressure of 12 bar. (3)                                                                                                                                                                                                                                           |    |  |  |
| <ol> <li>An iron casting has a volume of 0.42m<sup>3</sup> at 100°C. Its temperature falls to 12°C.</li> <li>Determine EACH of the following:</li> </ol>                                                                                                                           |    |  |  |
|                                                                                                                                                                                                                                                                                    |    |  |  |
| (b) the percentage reduction in volume. 	(4)                                                                                                                                                                                                                                       |    |  |  |
| <i>Note: The coefficient of linear expansion of cast iron is 0.000011/°C.</i>                                                                                                                                                                                                      |    |  |  |
| 4. A carbon block of mass 0.75 kg is completely burnt in a furnace to form carbon dioxide. In the process 15% excess air was used.                                                                                                                                                 |    |  |  |
| Determine the mass of air actually supplied. (8)                                                                                                                                                                                                                                   |    |  |  |
| Note: Air contains 23% oxygen by mass. Atomic mass: carbon $=12$ ; oxygen $=16$ .                                                                                                                                                                                                  |    |  |  |
| 5. ( <i>a</i> ) State the formula for calculating the <i>Indicated Power</i> of an engine unit, defining EACH of the symbols and units used. (4)                                                                                                                                   |    |  |  |
| ( <i>b</i> ) A two-cylinder two-stroke single-acting engine develops an indicated power of 12.8 kW at a speed of 23 rev/min. The piston diameter of the engine is 80 mm and the length of the engine stroke is 120 mm.                                                             | 00 |  |  |
| Calculate the mean effective cylinder pressure <i>in bar</i> . (6)                                                                                                                                                                                                                 |    |  |  |

6. State FIVE desirable properties of a refrigerant fluid.

(5)

7. (a) Describe the general structure of an atom. (5)
(b) Explain, with the aid of sketches, how an electric current flows through a metallic conductor. (5)


(5)

(4)

(3)

- 8. For the circuit diagram shown in Fig. Q.8, calculate EACH of the following:
  - (a) the pd across the 7  $\Omega$  resistance;
  - (b) the current through each resistor.

(b) larger voltages.



| 9.  | ( <i>a</i> ) | State what is meant by the <i>temperature coefficient of resistance</i> of a material.                              | (3)  |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------|------|
|     | (b)          | A copper rod is 0.4 m long, 4.0 mm in diameter and has a resistance of 55 $\Omega$ at temperature 20°C.             | room |
|     |              | Calculate the <i>resistivity</i> of the wire at that temperature.                                                   | (6)  |
| 10. | ( <i>a</i> ) | Explain the term internal resistance of an electric cell, stating the effect it has on the terminal                 |      |
|     |              | voltage of the cell.                                                                                                | (4)  |
|     | (b)          | The emf of a cell is 1.5 V and its terminal voltage is 1.3 V when delivering a current of 0.8 A.                    |      |
|     |              | Calculate the internal resistance of the cell.                                                                      | (5)  |
| 11. | (a)          | State Faraday's Law of electromagnetic induction.                                                                   | (3)  |
|     | (b)          | A steady current flowing in a coil of 1500 turns produces a magnetic flux of 2.5 mWb.                               |      |
|     |              | Calculate the average value of the emf induced in the coil when the current is reversed in 0.2 seconds.             | (4)  |
| 12. |              | lain, with the aid of circuit diagrams, how a moving coil test meter can be adapted to measure CH of the following: |      |
|     | (a)          | larger currents;                                                                                                    | (3)  |