GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

Marks for each part question are shown in brackets

1.	(a) State the THREE modes of heat transfer.	(3)		
	(<i>h</i>) Give ONE example of EACH of the three modes of heat transfer.	(3)		
 A copper vessel of mass 2 kg contains 6 kg of water. The initial temperature of the vessel and 20°C and the final temperature is 90°C. 				
	Calculate how much heat energy was added, assuming that heat losses are negligible, giving your answer in kJ.	(6)		
	The specific heat capacity of copper is 0.394kJ/kgK The specific heat capacity of water is 4.193 kJ/kgK			
3. With regard to combustion in boilers and internal combustion installations, explain EACH of the following:				
	(a) the meaning of excess air supply;	(3)		
	(b) the reason for always providing excess air;	(4)		
	(c) the effects of an inadequate air supply.	(3)		
4.	An oil engine develops indicated power of 52 kW. The brake specific fuel consumption 0.37kg/kWh and the mechanical efficiency is 88 per cent.	on is		
	Calculate EACH of the following:			
	(a) the brake power;	(4)		
	(b) the fuel consumption per hour.	(4)		

- 5. (a) Sketch a simple vapour compression refrigeration circuit, labelling the principal components. (4)
 - (b) Describe what happens to a refrigerant in a vapour compression circuit as it passes through EACH of the following:

(i) the condenser;	(2)
(ii) the regulator or expansion valve;	(2)
(iii) the evaporator.	(2)

6. A thermometer at the sub-zero temperature of -18° C contains 300 mm³ of alcohol. The coefficient of cubical expansion of alcohol is $10.8 \times 10^{-4}/^{\circ}C$.

Calculate the volume of the alcohol when the temperature is increased to 25° C. (10)

7. An electrical circuit with two resistors connected in parallel is shown in Fig. Q.7.

Calculate EACH of the following:

- (a) the value of current flowing through each resistor;
- (b) the resistance of R_2 .

(6)

(2)

Fig. Q.7

8. The resistance of a coil of wire at the start of a heat test is 250 Ω when its temperature is 15°C. At the completion of the test the resistance is 275 Ω . The temperature coefficient of resistance of the wire at 0°C (α_o) is 0.005 $\Omega/\Omega/^\circ$ C.

Calculate the temperature of the coil at the completion of the test. (10)

- 9. (a) Sketch a lead acid cell labelling the parts. (3)
 - (b) Describe the chemical action while the cell is being charged. (3)
- 10. Sketch the magnetic flux distribution for EACH of the FOUR examples of magnets depicted on Worksheet Q.10.
- 11. A rectangular coil wound with 80 turns of wire has a mean width of 40 mm and an effective length of 100 mm. The coil, carrying a current of 6 A, is placed in a uniform magnetic field of flux density 0.15Tesla.

Calculate EACH of the following:

	(<i>a</i>)	the force acting on one side of the coil;	(4)
	(b)	the maximum torque on the coil.	(4)
12.	(a)	Sketch a moving coil instrument, labelling the component parts.	(5)

(b) Describe how the instrument sketched in Q. 12(a) operates. (5)

TS043-12 GENERAL ENGINEERING SCIENCE II

15 FEBRUARY 2002

WORKSHEET Q.10 (N.B. This Worksheet must be returned with your answer book)

