GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

Marks for each part question are shown in brackets

1. During heat treatment, a steel engine component of mass 35 kg is cooled from 640°C to 85°C by immersion in a tank of quenching oil. The oil temperature increases by 50°C during the process.

Determine the mass of oil.

(10)

Note: Specific heat capacity of quenching oil is 1.9kJ/kg K Specific heat capacity of steel is 0.49kJ/kg K

2. During a constant pressure process a perfect gas is cooled from an initial condition of 1.13 bar pressure, 298 K temperature, and 0.045 m³ volume. During the process, the temperature of the gas is reduced to 258 K.

Determine EACH of the following:

(<i>a</i>)	the mass of gas;	(4)
(<i>b</i>)	the final volume of the gas.	(4)
Note	e: Characteristic Gas Constant R for the gas is 0.259kJ/kg K	

- 3. (a) State the meaning of the term *combustion*. (1)
 (b) List the THREE essential conditions necessary for combustion to occur. (3)
 (c) Calculate the mass of oxygen needed to burn completely for EACH of the following:
 - (i) 0.6 kg Carbon;
 (3)

 (ii) 0.12 kg Hydrogen.
 (3)

Note: Relative atomic masses: oxygen 16: hydrogen 1; carbon 12

4. The following results were obtained during an engine-trial on a single acting, single cylinder two stroke engine:

Bore	150mm
Stroke	200 mm
Engine speed	220 RPM
Indicator diagram mean height	11.5mm
Engine indicator spring rating	50kN/m ² per mm

Determine EACH of the following:

(a)	the indicated mean effective pressure;	(2)

(b) the indicated power.

(6)

5.	5. With reference to a vapour compression refrigeration plant:		
	(a) sketch and label a line diagram of the system;	(4)	
	(b) indicate on the diagram in $Q.5(a)$ the state of the refrigerant at each main point in the system.	(4)	
6.	A steel ball bearing race has a nominal diameter of 80 mm at 20°C. Its diameter must be reduced by 0.0 mm in order to assemble it in a housing.)3	
	Determine the temperature to which it must be cooled.	(6)	
	<i>Note:</i> The coefficient of linear expansion of steel is $12 \ge 10^{-6}$ /°C		
7.	An 85 Ω resistor is connected to a 220 V d.c. power supply.		
	Determine EACH of the following:		
	(a) the circuit current;	(2)	
	(b) the power dissipated;	(2)	
	(c) the energy consumed in 4 hours.	(2)	
8.	For the circuit shown in Fig. Q.8 determine EACH of the following:		
	(<i>a</i>) the current flowing in each resistor;	(6)	

(*b*) the resistance value of R,.

9. A resistor is to be made by winding wire of resistivity 370 $\mu\Omega$ mm and diameter 0.13mm around a cylindrical former.

The total resistance of the component is to be 8 Ω .

Determine the length of wire required.

(4)

- 10. (a) State the meaning of the term *magnetic flux*. (2)
 (b) An electric conductor of length 55 m moves at a velocity of 11 m/s in a direction 90° to a uniform magnetic field. An e.m.f. of 0.14 V is induced in the conductor. Determine the density of the magnetic field. (6)
 11. (a) Describe, with the aid of a sketch, how torque is produced on the armature of a d.c. motor. (4)
 (b) Explain the function of the commutator in a d.c. generator. (4)
 12. The resistance of a moving coil test meter is 12Ω., and it takes 44 mA to produce full scale deflection. (6)
 - (b) Calculate the values of additional resistance to extend its measurement range to EACH of the following:

(i)	2 A	(3)
(ii)	10V.	(3)