June 2001

GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

~ . .

. .

Marks for each part question are shown in brackets

1. An engine cylinder liner has a bore of 170 mm. The overall piston clearance at 25°C is 1.3 mm.

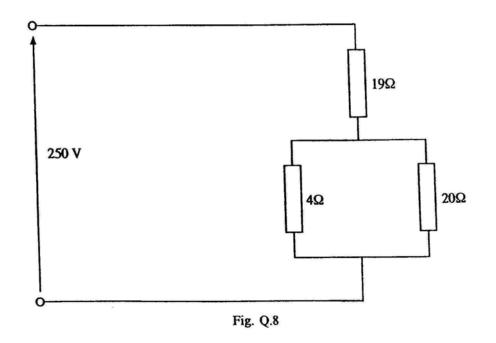
Determine the temperature at which the piston will just seize in the liner. (8)

Note: The coefficient of linear expansion of the piston material is $21 \ge 10^{-6/\circ}$ C The coefficient of linear expansion of the liner is $7 \ge 10^{-6/\circ}$ C

. .

2. An aluminium beaker weighing 0.8 kg contains 2.5 kg of pure water. Initially the combined mass of water and aluminium is at a temperature of 18°C. Heating takes place until the combined mass is at 90°C.

	Calculate the heat energy required.		(8)	
	Assume	there are no heat losses the specific heat capacity of water is 4.2 kJ/kgK the specific heat capacity of aluminium is 0.39kJ/kgK		
3.	(a) Sta	te Charles' law for a perfect gas.	(2)	
	(b) Ex	press Charles' law as an equation, and state the units used.	(2)	
		perfect gas has a specific volume of 0.75 m ³ /kg at a temperature of 30°C. Calculate the speci lume when the temperature is raised to 187°C while the pressure remains constant.	fic (6)	
4.		ate the chemical formulae for EACH of the following compounds associated was	ith	
	((i	 (i) Water; (ii) Carbon dioxide; (iii) Carbon monoxide; (iv) Sulphur dioxide. 	 (1) (1) (1) (1) 	
		ate TWO reasons why it is undesirable to have insufficient air supplied in a combustion rocess.	(4)	
5	. With	reference to refrigeration plant, state SIX desirable properties of an effective refrigerant fluid	. (6)	


6. An internal combustion engine develops 500 kW at the output shaft. It has an indicated specific fuel consumption of 160g/kWh and consumes fuel at a rate of 110kg/h.

Determine EACH of the following:

(a) the mechanical efficiency of the engine;	(5)	
--	-----	--

(b) the brake thermal efficiency given that the calorific value of the fuel is 40.8 MJ/kg. (5)

7.	(a) Describe, with the aid of a labelled sketch, the structure of an atom.	(6)	
	(<i>b</i>) Describe how electric current flows through a metallic conductor.	(4)	
8.	For the circuit shown in Fig. Q.8 determine EACH of the following:		
	(a) the supply current;	(4)	
	(b) the potential differences across the 19 Ω . and the 4 Ω resistors.	(4)	

9. The element of an electric heater has a resistance of 28Ω and is connected to a 220 volt supply for a period of 7 hours.

Determine EACH of the following:

(a) the current flowing;	(2)
(b) the power supplied in kW;	(3)
(c) the energy consumed in kWh.	(3)
10. (a) Name THREE effects produced by an electric current.	(3)

- (b) Describe how the state of charge held in a lead-acid secondary cell is normally measured. (2)
- (c) Name the instrument used to take the measurement in Q.10(b) and describe how it is used. (3)

11. (a) State Lenz's Law.	
(<i>b</i>) A magnetic flux of 4mWb is produced by a current carrying coil having 220 turns. The current direction is completely reversed during a time period of 0.25 s.	
Calculate the magnitude of the emf induced in the coil.	(4)
12. With reference to a moving coil electrical test instrument:	
(a) sketch and label the main components;	(6)
(b) explain the principle of its operation.	(4)