July 2000

GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

Marks for each part question are shown in brackets

1. (a) State the difference between <i>temperature</i> and <i>heat energy</i> .	(2)
(b) Outline the mechanism of heat transfer by EACH of the following:	
(i) conduction;	(3)
(ii) convection.	(3)
2. A furnace uses 5.5 m ⁵ of gas to raise the temperature of a 250 kg mass of steel to 1023K. The c value of the gas is 35MJ/m ³ and the specific heat of the steel is 500J/kgK.	calorific
Determine the thermal efficiency of the furnace given that its initial temperature is 25°C.	(10)
3. (a) Define Boyle's Law.	(3)
(<i>b</i>) A 3.5 m ³ volume of air at a pressure of 20kN/m ² gauge is compressed at constant temperat pressure of 4.25 bar gauge.	ture to a
Calculate the final volume of air given that the atmospheric pressure is 100 kN/m^2 .	(5)
4. (a) Explain the process of <i>combustion</i> .	(3)
(b) Explain the effect on the combustion process of EACH of the following:	
(i) inadequate air;	(3)
(ii) excess air.	(3)
5. An internal combustion engine develops 600kW at the shaft. It has an indicated fuel consumption of 170g/kWhr and consumes fuel at the rate of 115kg/hr.	specific
Determine EACH of the following:	
(a) the mechanical efficiency of the engine;	(5)
(b) the brake thermal efficiency given that the calorific value of the fuel is 40.8MJ/kg.	(5)
6. With respect to a refrigeration cycle, state the primary function of EACH of the following co	omponents:
(a) condenser;	(2)
(b) expansion valve;	(2)

(c) evaporator. (2)

7. (<i>a</i>) State the THREE main effects of an electric current.	(3)
(b) Give TWO practical applications of EACH effect in Q.7(a).	(6)
8. Distinguish between the terms <i>electromotive force</i> and <i>potential difference</i> .	(6)
9. Determine the resistance of a wire of length 40m, a diameter of 20 mm and a resistivity of 125 $\mu\Omega$ m	m. (6)
10. (a) With reference to electric storage batteries, sketch the basic construction of:	
(i) a primary cell;	(4)
(ii) a secondary cell.	(4)
(b) State the unit of battery capacity.	(2)
11. (a) State Lenz's Law.	(2)

(b) A coil of axial length 100 mm and 80 turns rotates between the poles of a 4-pole generator within a uniform flux density of 150mT. The speed of rotation is 1500 rpm and the width of the coil is 40 mm.

Calculate the maximum emf generated.	(8)
--------------------------------------	-----

12. For the circuit shown in Fig. Q.12, calculate EACH of the following:

<i>(a)</i>	the value of the resistor R;	(4)
()		(-)

(4)

(*b*) the value of the current flowing in EACH resistor.

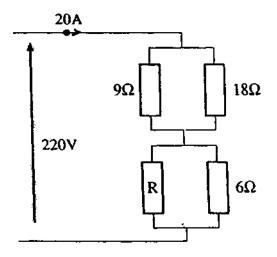


Fig. Q.12