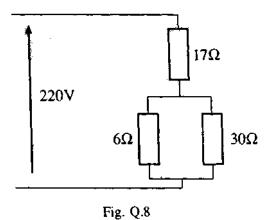
Dec 1999


GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

Marks for each part question are shown in brackets

1.	(a) State the THREE modes of heat transfer.	(3)
	(b) Give ONE example of EACH of the three modes in Q.l(a).	(3)
2.	The clearance between a piston and the wall of a 150 mm bore cylinder liner is 0.5 mm at 10°C.	
	Calculate the temperature at which the piston will just seize in the liner.	(8)
	Note: Coefficient of linear expansion of the piston is 21×10^{-6} C. Coefficient of linear expansion of the liner is 6×10^{-6} C	
3.	(a) Explain what is meant by a <i>perfect gas</i> .	(2)
	(b) Calculate the mass of gas that will be contained in a 3 m ³ bottle at 10 bar and 20°C given that th specific gas constant is 260J/kg.	e (6)
4.	A fuel, with a chemical composition of C_2H_8 , is completely burned in 50 kg of air at stoichiometric conditions.	
	Determine the mass of the fuel.	(8)
	Note: Air contains 23% oxygen by mass. Relative atomic masses: hydrogen 1, carbon 12, oxygen 16.	
-	5. The stroke to bore ratio for a six cylinder single-acting two stroke diesel engine is 2.86:1. Wh engine is running at 80 rpm the mean area of the indicator diagrams is 1 380 mm ² with a length mm when using a spring scale of 100kN/m ² /mm. The shaft power is 15 800kW and the mech efficiency is 86%.	of 80
	Determine the bore and stroke of the engine.	(10)
	6. (<i>a</i>) Sketch and label a simple refrigeration cycle diagram.	(2)
	(b) Explain the condition of the refrigerant as it passes through EACH stage of the cycle in Q.6(a).	(8)
	7. <i>(a)</i> Describe the structure of an atom.	(5)
	(b) Explain, with the aid of sketches, how an electric current flows through a metallic conductor.	(5)

- 8. For the circuit diagram shown in Fig. Q.8, calculate EACH of the following:
 - (a) the potential difference across the 17 Q resistor;
 - (b) the current through each resistor.

9. An electrical appliance has a resistance of 40 Ω and is supplied with 245 V. Calculate

EA	CH of the following:	
(a)	the current;	(4)
(b)	the power supplied in kW.	(4)

10. A 230 V electric kettle is required to heat 0.5 kg of water from 10°C to its boiling point in 5 minutes. Calculate the resistance of the heating element, given that the efficiency of the kettle is 80%. (8)

Note: Specific heat capacity of water is 4.2kJ/kgK

11. A rectangular coil wound with 80 turns of wire has a mean width of 40 mm and an effective length of 100mm. The coil, carrying a current of 6A, is placed in a uniform magnetic field of flux density 150mT.

Calculate EACH of the following:

(a) the force acting on one side of the coil;	(3)
(b) the maximum torque on the coil.	(3)

12. A moving coil electrical test instrument has a coil resistance of 2.5 Ω and a full scale deflection with 20 mA. Sketch and label simple circuit diagrams to show how the instrument can be arranged to indicate:

(a) a maximum voltage of 20 V;	(5)

(b) a maximum current of 3 A. (5)

(4) (4)