July 1999

(3)

(2)

GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

Marks for each part question are shown in brackets

1.	(a) State the difference between latent heat and sensible heat.		
	(b) A block of ice of mass 1.5 kg at a temperature of -6° C is immersed in 3 litres of boiling water.		
	Determine the final temperature of the mixture, assuming no heat losses.	(6)	

Note: Specific heat capacity of ice is 2.1 kJ/kgK Specific heat capacity of water is 4.2kJ/kgK Specific latent heat of fusion is 335kJ/kg

A steam pipe is 3.85m long at a temperature of 18°C. Determine the increase in length when allowed to expand freely when carrying steam at a temperature of 260°C, given that the coefficient of linear expansion of the pipe material is 1.25 x 10⁻⁵/°C.

3. (a) Define Charles' Law.

- (b) The air pressure in a starting air receiver is 40 bar at a temperature of 24°C. A fire in the vicinity causes the temperature to rise to 65°C. Calculate the final pressure of the air in the receiver, neglecting the increase in the size of the receiver.
- 4. Calculate the mass of air required to burn 5 kg of propane (C_3H_g) in 30% excess air for complete combustion. (10)

Note: Air contains 23% oxygen by mass. Relative atomic masses: hydrogen 1; carbon 12; oxygen 16.

- 5. The diameter of each cylinder of a six cylinder single-acting two-stroke diesel engine is 635 mm and the stroke is 1010 mm. Indicator diagrams taken off the engine when running at 2.2 rev/s gave an average area of 563 mm². The length of the diagrams is 80mm and the scale of the indicator spring is 1 mm = 100kN/m². Calculate the indicated power of the engine. (8)
- 6. List, giving reasons, FOUR desirable properties of a refrigerant.(8)
- 7. (a) Describe, with the aid of a sketch, the operation of a thermocouple. (8)
 - (b) Give ONE example of the use of a thermocouple.

8. Determine, for the circuit shown in Fig. Q.8, the current in EACH resistor.

9. A coil of copper wire has a resistance of 150 Ω at 20°C. When the coil is connected across a 240 V d.c. supply the current stabilises at 1.25 A. Calculate the average temperature of the coil. (8)

Note: The temperature coefficient of resistance of copper at 20°*C is* 0.0039/°*C*

10. A steel ring, having a mean circumference of 750 mm and a cross-sectional area of 500 mm², is wound with a magnetising coil of 120 turns. Determine the current required to set up a magnetic flux of 630 μ Wb in the ring, using the data from Table Q.10. (9)

Flux density (T)	0.9	1.1	1.2	1.3			
Magnetic field strength (A/m)	260	450	600	820			
Table 0.10							

11. A conductor 500 mm long is moved at a constant speed at right angles to a uniform magnetic field of density 0.4 T. The conductor forms part of a closed circuit with a resistance of 0.5 Ω and the emf induced is 2 V.

Calculate:

(<i>a</i>)	the velocity of the conductor;	(3)
(b)	the force acting on the conductor;	(3)
(c)	the work done when the conductor has moved 600 m.	(2)
7) S 1	tate the assential properties of:	

12. (*a*) State the essential properties of:

(i) a good electrical conductor;	(1)
----------------------------------	-----

(ii) a good electrical insulator. (1)

(b) Give THREE examples of materials used in EACH case in Q. 12(a). (6)

(8)