July 1998

GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

Marks for each part question are shown in brackets

1.	(a) State the THREE modes of heat transfer.	(3)
	(b) Give ONE example of EACH of the three modes stated in Q.l(a).	(3)
2.	A furnace uses 5.5 m^3 of gas to raise the temperature of a 250 kg mass of steel to 1023K. The calorific value of the gas is 35MJ/m ³ and the specific heat capacity of the steel is 500J/kgK.	2
	Determine the thermal efficiency of the furnace given that its initial temperature is 25°C.	(10)
3.	(a) Define Boyle's Law.	(2)
	(b) The pressure of a gas held in a 0.05 m^3 bottle is 10 bar. Calculate the pressure of the gas when it is released into a container of volume 0.8 m^3 at constant temperature.	(4)
4.	One kg of a fuel with a chemical composition of CH_4 is burned completely in 20% excess air.	
	Determine the amount of air which must be supplied.	(10)
	Air contains 23% oxygen by mass Relative atomic masses: hydrogen 1, carbon 12, oxygen 16	
5	With respect to the refrigeration cycle state the primary function of EACH of the following:	
	(a) condenser;	(2)
	(b) throttle valve;	(2)
	(c) evaporator.	(2)
6	5. The following data relates to tests on a four-stroke single-acting six-cylinder IC engine:	
	Cylinder bore200 mmPiston stroke250 mmDiagram spring number50kN/m²/mmArea of indicator diagram650 mm²Length of indicator diagram60 mmEngine speed300 rpm	

Calculate:

(a) the mean effective pressure per cylinder;	(4)
---	-----

(b) the indicated power of the engine. (6)

7. (a) Describe the structure of an atom.
(b) Explain, with the aid of sketches, how an electric current flows through a metallic conductor.
(5)

(4)

(6)

(6)

- 8. For the circuit shown in Fig. Q.8, calculate:
 - (*a*) the value of R;
 - (b) the value of the current flowing in EACH resistor.

- A wire of length 40 m has a diameter of 20 mm and a resistivity of 125µΩmm.
 Determine the resistance of the wire.
- 10. (a) State Faraday's Law of electromagnetic induction. (4)
 (b) The flux linking with a coil of 80 turns changes at a rate of 50 mWb per second. Calculate the average value of the induced emf. (4)
 11. (a) Sketch the basic construction of:

 (i) a primary cell;
 (4)
 - (ii) a secondary cell.
 (4)
 (b) Explain the difference in operation between the two types of cell in Q.ll(a).
 (2)

12. A 6kW drill is connected to a 110 V supply.

Calculate:

(a)	the current required to drive the drill:	(4)
(00)		(.)

(4)

(b) the internal resistance of the drill.