GENERAL ENGINEERING SCIENCE II

Attempt ALL questions

Marks for each part question are shown in brackets

1.	(a) Define the <i>specific heat capacity</i> of a substance.	(2)
	(<i>b</i>) Determine the heat required to raise a steel component of mass 500 kg to 700 K from 20°C given that the specific heat capacity is 0.5 kJ/kgK.	(4)
2.	A steel chisel of mass 0.5 kg is heated to 560°C and then plunged into a bath containing 0.01 m ³ of oil at 10°C. Calculate the final temperature of the oil.	l (10)
	Note: Density of oil: 850 kg/m ³ Specific heat capacity of steel: 0.45 kJ/kgK Specific heat capacity of oil: 1.8 kJ/kgK	
3.	(a) Explain what is meant by a perfect gas.	(2)
	(<i>b</i>) Calculate the mass of gas that will be contained in a 3 m ³ bottle at 10 bar and 20°C given that the specific gas constant is 260J/kg.	(6)
4.	(a) Explain the process of <i>combustion</i> .	(2)
	(b) Explain the effect on the combustion process of:	
	(i) inadequate air,	(3)
	(ii) excess air.	(3)
5.	For the ideal refrigeration cycle state the condition of the refrigerant as it enters EACH of the followir	ıg:
	(a) condenser,	(2)
	(b) throttle valve;	(2)
	(c) evaporator,	(2)
	(d) compressor.	(2)

6. A diesel engine develops 800 kW at the propeller of a vessel when using a fuel of 40 MJ/kg at the rate of 170kg/hr. The manufacturer states that the indicated output should be 950 kW.

Calculate:

(a)	the mechanical efficiency of the engine given that the transmission losses are 5% of the propeller output;	(3)
(b)	the brake thermal efficiency;	(4)
(c)	the indicated thermal efficiency.	(3)

- 7- (a) With reference to their atomic structure, explain the difference between electrical conductors and insulators. (4)
 - (b) Give TWO examples for EACH of the following:
 - (i) good electrical conductors;
 - (ii) good electrical insulators.
- 8. For the circuit shown in Fig. Q.8, calculate:
 - (a) the current in each resistor,
 - (b) the power dissipated in the parallel resistor section.

9. A two-core cable with each conductor 8 mm² in cross-sectional area carries a current of 35 A. Calculate the power loss in a metre length of cable at a temperature of 20°C given that the resistivity of copper at 0° C is 17 μ Ωmm. (10)

Note: Temperature coefficient of resistance of copper at 0°C is 0.0043 per degree C

10. (a) Explain what is meant by magnetic flux.

(2)

(4)

(6)

(3)

(b) Sketch diagrams to show how the magnetic flux would be distributed around:

(i) a horseshoe magnet;	(3)
-------------------------	-----

(ii) two bar magnets lying parallel to each other a short distance apart with their north poles facing different directions.

11. (a) Draw circuit diagrams to show how a moving coil meter and a resistor are connected to measure:

(i) current;	(2)
(ii) voltage.	(2)
(b) Explain the operation of EACH circuit in Q.ll(a).	(4)

12. A rectangular coil wound with 80 turns of wire has a mean width of 40mm and an effective length of 100 mm. The coil, carrying a current of 6 A, is placed in a uniform magnetic field of flux density 150 mT.

Calculate:

(a)	the force acting on one side of the coil;	(4)
(b)	the maximum torque on the coil.	(3)