CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY – MARINE ENGINEER OFFICER

EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

STCW 95 SECOND ENGINEER REG. III/3 (< 3000 kW) CLASS 1 FISHING ENGINEER STCW 95 CHIEF ENGINEER REG. III/2 – "YACHT 2"

043-11 – GENERAL ENGINEERING SCIENCE I	
THURSDAY, 23 JULY 2009	
1400 - 1600 hrs	
Examination paper inserts:	
	···

Notes for the guidance of candidates:

Non-programmable calculators may be used.

- 2. All formulae used must be stated and the method of working and ALL intermediate steps must
- be made clear in the answer.

Materials to be supplied by examination centres:

Candidate's examination workbook		,	,
Graph Paper			*
	*		Na.

GENERAL ENGINEERING SCIENCE I

Attempt ALL questions

Marks for each question are shown in brackets.

1. Simplify the following:

(a)
$$\frac{a \times a^2 \times a^5}{a^3 \times a^7}$$

(b)
$$\frac{x}{2} + \frac{2x}{3} - \frac{2x}{5}$$

2. The abrasive tank in a pressure cleaning machine is in the shape of an inverted cone having a diameter of 1.4m and an apex angle of 60°.

Determine the volume of the abrasive tank. (8)

3. Two sides of a triangle measure 5.3cm and 7.3cm respectively, and the included angle between them is 44°27'.

Calculate the area of the triangle in square metres. (8)

- 4. (a) Given that $n^2r + 1 = NR$, rearrange the terms to make n the subject. (4)
 - (b) Calculate the value of R when r = 0.725, N = 16 and n = 7.192. (4)
- 5. (a) Plot the graph of $y = \frac{x^2}{2} 3x$ between the limits of x = 0 and x = 6. (8)
 - (b) Using the graph obtained in Q5(a) state the value of x when y = -3. (2)

6. The thread of a screwjack has a pitch of 12mm and the machine is operated by a lever having an effective length of 350mm. When an effort of 80N is applied a load of 455kg can just be lifted.

Calculate EACH of the following:

- (a) the force ratio of the machine; (3)
- (b) the movement ratio of the machine; (3)
- (c) the efficiency of the machine under these load conditions. (2)
- 7. A body is travelling at 2.27m/s when it uniformly accelerates to 5m/s in 6.3 seconds.
 - (a) Define EACH of the following:
 - (i) acceleration, stating units; (1)
 - (ii) distance travelled, in terms of velocity and time. (1)
 - (b) Calculate EACH of the following:
 - (i) the acceleration of the body; (3)
 - (ii) the distance the body travelled in 6.3 seconds. (3)
- 8. Determine the value of the uniformly distributed load (UDL) in kN/m for the loaded beam shown in Fig Q8, given that the value of R_B is to be 85kN. (10)

Fig Q8

9. Determine the factor of safety for a rod 101.6mm in diameter if the maximum static tensile load is 327kN and the ultimate tensile stress of the material is 460MN/m².

(8)

10.	(a)	A ship has a displacement of 6495 tonne and when a mass of 28 tonne, already on board, is moved transversely across the upper deck by a distance of 8.3m, an angle of heel of 2° is generated.	
		Determine the position of the centre of gravity KG above the keel given that $m \times d = \Delta GM \tan\theta$ and KM = 4.02m.	(6)
	(b)	State the effect the removal of the 28 tonne mass will have on the position of G and the stability of the vessel.	(2)
11.		rectangular bulkhead, 18m wide, is flooded on one side only with water of density 0kg/m ³ .	
	Cal	culate EACH of the following:	
	(a)	the depth of flooding if the hydrostatic pressure at the bottom of the bulkhead is 63kN/m ² ;	(3)
	(b)	the hydrostatic load on the bulkhead at the depth of flooding determined in Q11(a).	(5)
12.	A v	essel has an underwater volume of 3415m ³ when in water of density 1025kg/m ³ .	
		double bottom tank 15m long x 12m wide x 2.3m deep, on the centreline, is now appletely filled with oil having a relative density of 0.86.	
		ermine the position of the centre of gravity above the keel, KG, given that the original was 6.1m.	(8)