Dec 2006

(10)

(8)

GENERAL ENGINEERING SCIENCE I

Attempt ALL questions

Marks for each question are shown in brackets.

1. (a) Multiply 2x - 4 by 2x + 3 (3)

(b) Simplify
$$2\frac{1}{3} + 3\frac{1}{3} \times 2\frac{1}{5}$$
 (5)

2. Calculate EACH of the following:

(a)	the length of the vertical side of a right angled triangle having a base of 7.8cm and a	
	hypotenuse of 12.48cm, using Pythagoras Theorem;	(5)
(b)	the area of the triangle to the nearest cm^2 .	(3)

3. A cylindrical vessel has an internal diameter of 1.85m and a maximum internal length of 4.96m measured from inside the outwardly dished hemispherical ends.

Calculate the volume of the vessel.

4. A screwjack has a screw thread of 4mm pitch operated by a lever 280mm in length.

Calculate the efficiency of the screwjack when a horizontal effort of 270N applied at the end of the lever just lifts a mass of 1.885 tonne.

5. A pump delivers $68m^3$ of sea water to a height of 24m in one hour and eight minutes.

Calculate EACH of the following:

(a)	the output power of the pump in kW;	(5)	
(b)	the input power of the pump if its efficiency is 60%.	(3)	
17.			

Note: Density of sea water is 1025kg/m^3

6.	(a)	Define the radian.	(2)				
	(b)	State the number of degrees in 2.09 radians.	(2)				
	(c)	Calculate the number of revolutions made by a flywheel in 25 seconds if the flywheel has an angular velocity of 4.02 rad/s.	(4)				
7.	A p	A pump rod is 0.46m long and has a modulus of elasticity $E = 200 \text{GN/m}^2$.					
	Cal	Calculate EACH of the following:					
	(a)	the strain in the rod when subjected to an axial compressive stress of 16N/mm ² ;	(5)				
	(b)	the new length of the rod when loaded as in Q7(a).	(3)				
8.	A ta witl	A tank has the following dimensions 12m long x 8m wide x 8m deep and is filled to the top with liquid of density 1038 kg/m ³ .					
	Cal	Calculate EACH of the following:					
	(a)	the hydrostatic pressure at a point lm from the bottom of the tank;	(3)				
	(b)	the hydrostatic force on the largest tank side.	(5)				
9.	A v star	essel of displacement 4460 tonne is heeled to port by 1.8° and is required to heel to board by exactly 1° .					
	Cal mo	culate the distance a mass of 19 tonne, already on board and on the centre line, must be ved to complete the change.	(8)				
	N	ote: $m \times d = \Delta GM \tan \theta$ with $KG = 5.1m$ and $KM = 5.7m$					
10.	A s tie Th hea	simple crane consists of a jib that is 4.5m long attached at its lower end to a wall and a rod 6.5m long connecting the jib head to the wall. e angle between the jib and tie is 90° and the crane supports a load of 1.5 tonne at the jib ad.					
	De	termine EACH of the following:					
	(a)	the force in the jib;	(4)				
	(b)	the force in the tie rod;	(4)				
	(c)	the direct stress in the tie rod which is 55mm in diameter.	(2)				

A vessel has a displacement of 4780 tonne with a KG of 4.7m. 11. An empty double bottom tank, 6m long x 5.8m wide x 2.8m deep is now filled with oil having a density of 960kg/m³.

Calculate the new position of the centre of gravity KG given that the tank is symmetrical about the centre line of the vessel.

(8)

The law of a straight line is given by the following expression: 12.

$$\mathbf{Y} = \mathbf{a}\mathbf{X} + \mathbf{b}$$

(a)	Plot and join the pairs of points shown in Table Q12 using the given scales.	(4)
(b)	Determine the values of a and b from your graph.	(2)

(b) Determine the values of *a* and *b* from your graph.

(c) State the law of the plotted straight line. (2)

Scales: X axis 4cm = 1 unit

Y axis 4cm = 1 unit

X	-1.5	0	2	3
Y	0	2	4.65	6

Table Q12