(10)

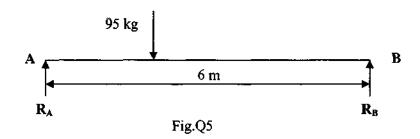
GENERAL ENGINEERING SCIENCE I

Attempt ALL questions

Marks for each question are shown in brackets

(E) = 200 GN/m^2 .

the boat speed in still water in m/s; the speed of the current in m/s.	
the speed of the current in m/s.	
· · · · x · · · · · · · · · · · · · · · · · · ·	
otal surface area of a solid cylinder is given by the following formula:	
$s = 2\pi r^2 + 2 \pi rh$ where $h = height$ $r = radius$	
Express h in terms of the other quantities.	
Calculate the height to the nearest centimetre of a cylinder having a diameter of 8cm and a total surface area of 327cm ² .	
reference to lifting machines:	
define efficiency in terms of force ratio and movement ratio;	
a machine has an efficiency of 47% when lifting a load of 2.03 tonne.	
Calculate the effort required to lift the 2.03 tonne load given that the movement ratio for this machine is 210.	
11 (4	$s = 2\pi r^2 + 2\pi rh$ where $h = height$ $r = radius$ Express h in terms of the other quantities. Calculate the height to the nearest centimetre of a cylinder having a diameter of 8cm and a total surface area of $327cm^2$. reference to lifting machines: define EACH of the following: (i) force ratio (mechanical advantage); (ii) movement ratio (velocity ratio); define efficiency in terms of force ratio and movement ratio; a machine has an efficiency of 47% when lifting a load of 2.03 tonne. Calculate the effort required to lift the 2.03 tonne load given that the movement ratio


5. Fig Q5 shows a uniform simply supported beam AB.

The beam has a mass of 625kg and supports a point load of 95kg such that reaction $R_A = 3.6kN$

Calculate EACH of the following:

(b) the position of the 95kg load. (5)

6. An electric motor comes to rest from running speed in 2 minutes 24 seconds and turns through 1782 revolutions whilst slowing down.

Calculate EACH of the following:

(b) the retardation in
$$rad/s^2$$
. (4)

- 7. Calculate the immersed depth, to the nearest metre, when a pressure gauge fitted in a submersible vessel indicates 5 bar in water of density 1018kg/m³. (8)
- A drydock gate has a width to depth ratio of 3:1. When flooded to the top on one side only with water of density 1016kg/m³ the hydrostatic force on the gate is 14.95MN.

Calculate EACH of the following:

(b) the width of the gate. (2)

9.	A box barge, 15 metres long and 6 metres beam, has a displacement of 459 tonne when floating in river water of 1020kg/m^3 The barge remains in the river and is now loaded with fresh water and floats at a draught of 7.94 metre.	
	Calculate for EACH of the following:	
	(a) the original draught;	(4)
	(b) the mass of fresh water loaded.	(4)
10.	A solid hemisphere has a diameter of 18cm.	
	Calculate EACH of the following:	
	(a) the volume of the hemisphere;	(4)
	(b) the <i>total</i> surface area in m ² .	(6)
11.	A vessel has a displacement of 2060 tonne and a KG of 4.6m.	
	Calculate the value of KM given that a mass of 6 tonne, already on board, when moved 4 metres across the deck causes the vessel to heel by 0.95°	
	Given $m \times d = \Delta GM \tan \theta$	(8)

12. Fig Q12 shows a simple wall crane.

Calculate EACH of the following:

- (a) the length of the tie; (3)
- (b) the force in the tie when supporting a 1.5 tonne load. (5)

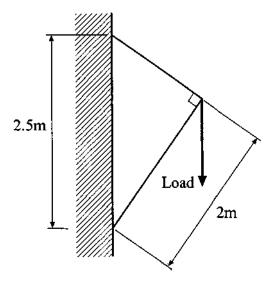


Fig Q12