Feb 2004

GENERAL ENGINEERING SCIENCE I

Attempt ALL questions

Marks for each question are shown in brackets

1. Simplify EACH of the following:

(a)
$$1\frac{1}{3} + 2\frac{3}{4} - 1\frac{9}{16}$$
 (4)

(b)
$$6a - \{3a - [4a - (7 - 2a)]\}$$
 (4)

2 A right angled triangle has an area of 2 m^2 . The sides are in the ratio of 5:12:13 and the triangle stands with the shortest side as the base.

Calculate EACH of the following:

(a)	the perpendicular height;	(6)
(a)	the perpendicular height;	(

(b) the length of the hypotenuse. (2)

3.	(a)	Define the radian.	(2)
	(b)	Calculate the number of degrees in 1.75 radian.	(2)
	(c)	Calculate the angular velocity of a flywheel if a point on the rim passes a counter 16 times in 25 seconds.	(4)

4. Calculate the mass of a piece of steel tube 2.85m long having an inside diameter of 25mm and a tube wall thickness of 6mm. (8)

Note: Steel is 7.6 times heavier than an equal volume of fresh water.

5. In a test on a lifting machine the following results were obtained:

Load = 10.193kg	Effort = 10N
Load = 20.3 8kg	Effort = 15N

Movement ratio (velocity ratio) = 40

Calculate EACH of the following:

(a)	the linear law of the machine;	(6)

(b) the force ratio (mechanical advantage) and efficiency when the load is 81.55kg. (4)

6	(a)	Draw the graph of $y - y^2$	for values of x between -1 and ± 2	(A)
0.	(a)	Draw the graph of $y = x$	101 values of x between -1 and +2	(+)

- (b) Using the same axes draw the graph of y = x + 1.5 (4)
- (c) Determine the co-ordinates of the points of intersection of the graphs drawn in Q6(a) and(b). (2)

Suggested scale: 4cm = 1 unit X

4cm = 1 unit Y

7. A box barge 22 metres long and 12 metres beam, has a mass of 960 tonne and floats in water of density 1017 kg/m^3 .

Calculate the absolute pressure on the bottom plating if the atmospheric pressure is 1.013 bar.

8. A bulkhead 29 metres wide and 18 metres deep is flooded to the top, on one side only, with water of density 1025kg/m³.

Calculate the hydrostatic force on the bulkhead in MN.

(8)

(8)

9. When a mass of 12 tonne is moved 5.2 metres across the deck it causes a vessel to heel by 0.6° .

Calculate the displacement of the vessel given that KM = 5.8m, KG = 4.9m and that

$$m \times d = \Delta GM \tan \theta \tag{8}$$

10. A body laying on a horizontal surface has a mass of 11.8kg and requires a horizontal force of 66N to just cause motion.

Calculate EACH of the following:

- (a) the value of the coefficient of friction; (3)
- (b) the acceleration that would result if a horizontal force of 122N was applied. (5)
- 11. A uniform simply supported beam AB, having a mass of 1.07 tonne, is shown in Fig. Q. 11

Calculate EACH of the following:

- (a) the value of the reaction R_A ; (5)
- (b) the value of the reaction R_B .

12. A pile is to be sunk 4 metres into the seabed.

Calculate the length of the pile if 33% of the pile length is to be immersed in the water and one quarter of the pile length is to be above the water surface.

(8)

(3)