July 2002

GENERAL ENGINEERING SCIENCE I

Attempt ALL questions

Marks for each part question are shown in brackets

1. Solve for x in the following equation:

$$\frac{3x}{5} - \left(\frac{x+12}{20}\right) = 3.25\tag{8}$$

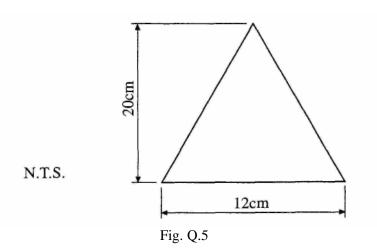
2. A bearing metal contains 18 parts of tin, 1.3 parts of antimony, 1 part copper and 1 part cadmium.

Calculate the masses of tin, antimony, copper and cadmium to produce 46 kg of bearing metal. (8)

3. A right angled triangle ABC has an hypotenuse AB of 18.2cm which makes an angle of 1.176 radians to the base BC.

Determine EACH of the following:

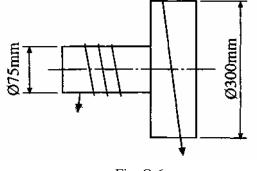
(<i>a</i>)	the length of the base BC to the nearest centimetre;	(4)
(b)	the area of the triangle.	(4)


4. A cylindrical vessel has an internal diameter of 1.85 metres and a maximum internal length of 4.63 metres measured from inside the hemispherical ends.

Determine the volume of the vessel in m^3 . (10)

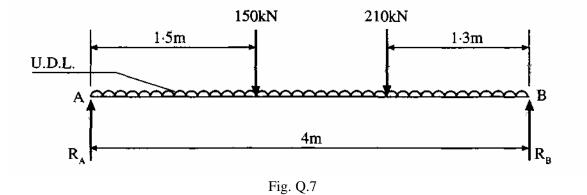
5. Fig Q.5 shows a solid cone.

Determine the TOTAL surface area to the nearest cm².


(8)

6. Fig. Q.6 shows a simple wheel and axle lifting machine.

Determine EACH of the following:


- (a) the velocity ratio of the machine;
- (b) the efficiency of the machine if it requires an effort of 240 N to just lift a 54 kg mass.

- Fig. Q.6
- 7. Fig. Q.7 shows a simply supported beam AB.

Determine EACH of the following:

- (a) the maximum value of the uniformly distributed load, given that the reaction R_B is 200 kN; (5)
- (b) the value of the reaction in R_A .

8. A tank has the following dimensions, length 8 metres, width 6 metres and depth 3.1 metres. The tank is filled with water of density $1022 \text{ kg}/\text{m}^3$.

Calculate EACH of the following:

- (a) the pressure on the tank bottom. (3)
- (b) the load on the longest side in MN.

(3)(5)

(3)

(5)

- 9. The electrical resistance R of a wire varies directly as the length l and inversely as the square of the radius r.
 - (a) Express the statement in terms of R, l, and r. (4)
 - (b) Determine the length of wire 1.6 mm in diameter that has the same resistance as a wire 4 metres long and 2 mm radius.(6)
- 10. A ship has a displacement of 3118 tonne with a centre of gravity KG 4.3 metres above the keel.

Determine the new position of the centre of gravity when a mass of 135 tonne is loaded on the centreline as deck cargo at 6.5 metres above the keel. (8)

11. A mass of 6 tonne is moved a distance of 9.4 metres across the deck of a ship and causes 1.7° of heel.

Determine the underwater volume of the ship given that GM = 0.69 m, and $m x d = \Delta GM \tan \theta$.

Density of seawater is $1025 \text{ kg}/\text{m}^3$.

12. A hole 19 mm diameter is to be punched through a piece of steel plate 19 mm thick.

Determine the force to be exerted by the punch given that the shear strength of the steel is 380 N/mm². (8)

(8)