June 2002

GENERAL ENGINEERING SCIENCE I

Attempt ALL questions

Marks for each part question are shown in brackets

1. The perimeter of a triangular field is 580 metres.

The three sides are in the ratio 7:9:13.

Determine the lengths of the sides of the field.

2. The following formula can be used to determine the minimum wall thickness of tubes:

$$T = \frac{PD}{2f + P}$$

Transpose the formula to make P the subject.

- A body of mass 24 kg is moving at 27 m/s when it is retarded uniformly to 8 m/s in 4 seconds.
 Determine EACH of the following:
 - (a) the retardation in m/s^2 ; (3)
 - (b) the retarding force necessary; (2)
 - (c) the distance travelled during the retardation period.
- 4. Two forces act at a point P as shown in Fig. Q.4.

Fig. Q.4

Determine the magnitude and direction of the resultant force.

(8)

(8)

(3)

(8)

- 5. A block of steel has a mass of 13.7 kg.
 - (a) Determine the coefficient of friction between the steel and a horizontal surface given that it requires
 123N applied parallel to the horizontal surface to just cause motion.
 (4)
 - (b) Rollers are now introduced under the block reducing the coefficient of friction by 87%. Determine the force applied parallel to the horizontal surface to just cause motion. (4)
- 6. A solid metal sphere of 12 cm diameter is totally submerged in a tank of water.

Calculate by how much the water level will rise given that the tank is 14 cm long by 14 cm wide. (8)

7. A plank of wood is 2.88 m long, 158 mm wide and 75 mm deep, and floats in water of density 1008kg/m³.

Calculate the height of wood above the water surface given that the wood has a density of 730kg/m³ and floats horizontally. (8)

8. Fig. Q.8 shows a horizontal beam supported at points A and B.

.

Determine the position of the 350kN force from support B such that $R_A = 2R_B$. (10)

9. A steel bar 1.6 m long has a diameter of 62.5 mm and when subjected to an axial pull of 320 kN extends by 1.83 mm.

Dete	ermine EACH of the following:	
(<i>a</i>)	the direct stress in the bar;	(4)
(b)	the direct strain in the bar;	(3)
(c)	the modulus of elasticity E for the steel.	(3)

- 10. Table Q.10 gives the load carrying capacity of roller bearing journals running at constant speed.
 - (*a*) Plot the graph from the tabular values.
 - (b) Estimate, using the graph in Q. 10(a), the safe load in kg for a roller bearing having a bore of 44.5 mm. (2)

(6)

(4)

Bore mm	25	35	55	65
Load kg	615	1033	2160	3140

T 1 1	0 10
Tahla	() ()
raute	0.10
	· · ·

Suggested scales: 1 cm = 2.5 mm bore 1 cm = 250 kg load

11. A container which is 20 m long, 2.5 m wide and 2.5 m high is full of cargo having a density of 2800kg/m³.

The container is loaded on the centreline of a ship having a displacement of 6400 tonne at a point 3.9 m above the keel.

Determine the movement of the ship's centre of gravity when loaded given that the original KG was 6 m. (8)

- 12. A centre tank measuring 8m by 16m by 24m deep is full of oil having a density of 730kg/m³
 - (a) Determine the hydrostatic force on the tank bottom plating.
 - (b) Determine the draught of the ship in sea water of density 1025 kg/m^3 so that the external sea water pressure on the bottom plating is equal to the internal oil pressure. (4)