July 1997

GENERAL ENGINEERING SCIENCE I

Attempt all questions

Marks for each part question are shown in brackets

1. Evaluate EACH of the following, expressing your answer as a fraction

(a)	$\left(1\frac{1}{2} \div 2\frac{1}{4}\right) \div \left(\frac{3}{4} \times 4\right)$	(5)

(b)
$$\left(\frac{13}{15} \div \frac{4}{3}\right) \times \left(\frac{2}{3} \div \frac{1}{2}\right)$$
 (5)

- 2. A casting of mass 52 kg consists of 10% tin, 2% zinc and the remainder copper. Determine:
 - (a) how much copper is present in the alloy by mass; (4) (2)
 - (b) the ratio between zinc and copper in the casting.
- 3. A ladder is 13.5 metres long and reaches a point on a wall 10.4 metres above the ground. Calculate:
 - (a) the angle the ladder makes with the horizontal at ground level; (4) (b) the angle the ladder makes with the wall. (4)
- 4. A right cone has a volume of 796 cm^3 and a base radius of 8 cm. Determine:
 - (a) the perpendicular height of the cone; (5) (*b*) the curved surface area of the cone. (5)
- 5. A mass of 136.5 kg can just be moved by a horizontal force of 651 N. Lubricant is now introduced, reducing the coefficient of friction μ by 70%. Determine the least horizontal force to just cause motion. (8)
- 6. A launch increases its speed uniformly from 5 knots to 19 knots in 108 seconds.

(a) Draw the velocity time diagram.	(5)
(b) Determine the distance travelled.	(5)
Suggested scale: $1 \text{ cm} = 10 \text{ seconds}$	
4 cm = 5 metre/second	

Note: 1 nautical mile = 1852 metres

7. The following formula relates to simple harmonic motion.

$$t = 2\pi \sqrt{\frac{displacement(L)}{acceleration(g)}}$$

- (a) Transpose the formula to make L the subject.
- (b) Calculate L when g = 9.81, t = 0.8, and $\pi = 3.14$.
- 8. Fig. Q.8 shows a horizontal beam, simply supported at points A and B. Determine the position of the 400 kN force from support B such that $R_A = 2R_B$. (10)

Fig. Q.8

9. Table Q.9 gives the load carrying capacity of roller bearing journals running at 1 000 revolutions per minute.

Bore mm	25	35	55	65
Safe load kg	630	1027	2190	3 1 27

T 1	1	\sim	0
Tan	le i	()	ч
1 40	IU.	v	, ,
		_	

- (a) Plot the graph from the tabular values.
- (b) Estimate, using the graph in Q.9(a), the safe load in kg for a roller bearing having a bore of 50 mm. (2)

Suggested scale: 1 cm = 2.5 mm bore1 cm = 250 kg load

10. An underwater vessel has a pressure registered on its hull of 3.75 MN/m^2 in sea water of density 1025kg/m^3 .

Determine the submerged depth of the vessel.

(6)

(4)

(4)

(6)

 A machine can lift a load of 3.5 tonne with an applied effort of 817.5N. The efficiency of the machine is 37.5%.

Calculate the velocity ratio of this machine.

12. A hollow shaft has an inside diameter of 15 mm and has the same mass as a solid shaft of 10 mm diameter, both shafts being of the same length and material.

Determine the wall thickness of the hollow shaft.

(8)

(8)