GE	NERA	L ENGINEERING SCIENCE II				
Attempt ALL questions						
Ma	rks fo	r each question are shown in brackets.				
Sec	ction /	<u>A</u>				
1.	(a)	State the characteristic gas equation in both of its forms.	(2)			
	(b)	A gas whose original pressure, temperature and volume were 150 kPa, 0.15 m ³ and 30°C respectively is compressed until its new temperature and pressure are 70°C and 800 kPa.				
		Determine EACH of the following:				
		(i) the new volume of the gas;	(3)			
		(ii) the mass of the gas.	(3)			
		Note: $R = 0.29 \text{ kJ/kgK}$				
2.	resp	uantity of gas whose original volume and temperature are 0.2 m ³ and 303°C pectively is cooled at constant pressure until its volume becomes 0.1 m ³ . The is then heated at constant volume until its pressure is doubled.				
	Det	ermine EACH of the following:				
	(a)	sketch the processes on a pressure-volume diagram;	(2)			
	(b)	the temperature of the gas after the initial cooling process;	(3)			
	(c)	the temperature after the heating process.	(3)			
3.	0.5	kg Benzene (C6H6) is completely burned in 30% excess air.				
	Calc	ulate EACH of the following:				
	(a)	the mass of carbon dioxide in the exhaust gases of the fuel;	(4)			
	(b)	the mass of nitrogen in the exhaust gases per kg of fuel.	(4)			

[OVER

	a i sente	(1)
4.	(a) State TWO desirable properties of refrigerants.	
	 (a) State TWO desirable properties of terres (b) In a vapour compression refrigeration plant, briefly explain EACH of the following: 	(2)
	(i) under-cooling and its effect;	(-)
	 (i) under-cooling and its critect, (ii) the cause of the low pressure side into which expansion occurs through the TEV; 	(2)
	(iii) How the refrigerant flow rate is controlled.	(3)
5.	State and describe the THREE modes of heat transfer, giving an example of each.	(9) ~
6.	A 2 stroke diesel engine is tested over a 24 hour period and uses 18 tonnes of fuel. The power of the engine is tested using a dynamometer which gives a steady state torque reading of 50 kNm at 800 rpm. The mechanical efficiency was later found to be 87%.	
	Calculate EACH of the following:	
	(a) the brake power;	(3)
	(b) the indicated specific fuel consumption;	(3)
	(c) the brake thermal efficiency.	(3)
	Note: the calorific value of the fuel = 44 MJ/kg	

10. A conductor with an effective length of 500 mm and a diameter of 12.5 mm is carrying a current of 45 A at right angles to a magnetic field. The force on the conductor is 7 N.

Calculate EACH of the following:

- (a) the flux density;
- (b) the magnetic flux.
- 11. A section of a water retaining wall with a gate at the bottom is shown in Fig Q11. The gate is 0.7 m wide and is hinged at point A.

Determine EACH of the following:

- (a) the thrust force on the gate when the water level is 3.2 m;
- (b) the minimum force, F, required at the bottom of the gate to keep the gate closed if the thrust force acts at a point 0.02 m below the gate centroid.

Note: density of water is 1020 kg/m³

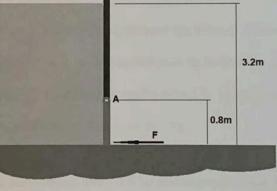


Fig Q11

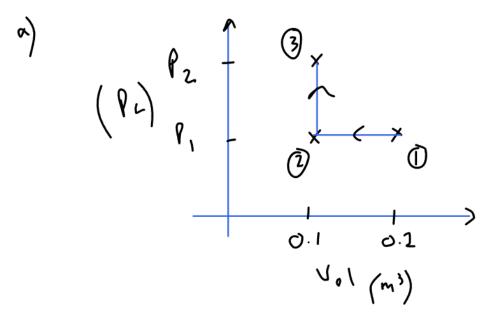
12. A ship, initially upright, has a mass, M, of 8000 tonnes, KM is 8.6 m and KG is 8 m. During bad weather a piece of deck cargo was lost overboard which had a KG of 10 m and was 8 m from the centreline, this resulted in a list of 3°.

Determine EACH of the following:

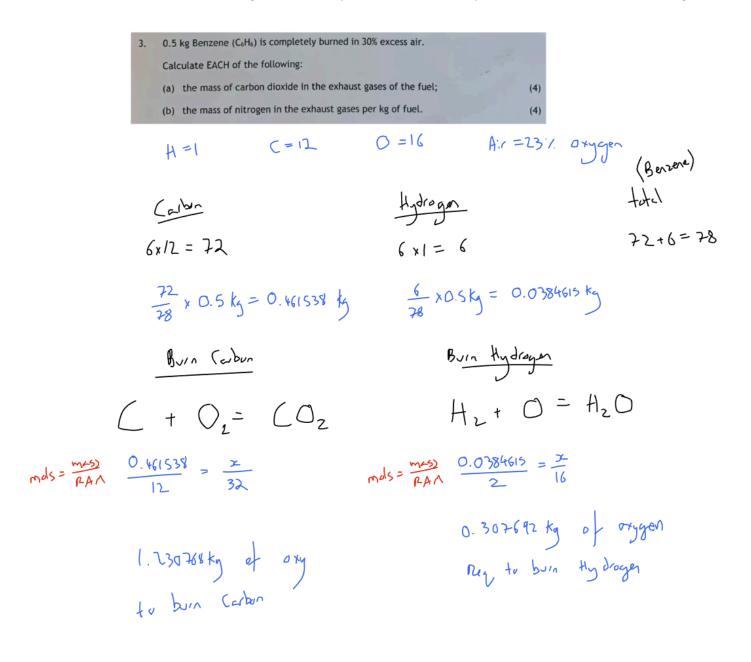
(a)	the mass of cargo lost overboard;	(5)
(b)	the new KG of the vessel after the loss of cargo;	(4)
(c)	the new GM after the loss of cargo.	(1)

(4)

(4)


(4)

(4)


0.031837 m

1. (a) State the characteristic gas equation in both of its forms. (2)
(b) A gas whose original pressure, temperature and volume were 150 kPa,
0.15 m³ and 30°C respectively is compressed until its new temperature and
pressure are 70°C and 800 kPa.
Determine EACH of the following:
(i) the new volume of the gas; (3)
(ii) the mass of the gas. (3)
(iii) the mass of the gas. (3)
Note:
$$R = 0.29 \text{ kJ/kgK}$$

(c)
 $\frac{10 \text{ km}}{10}$ (c) $\frac{10 \text{ km}}{$

2.	A quantity of gas whose original volume and temperature are 0.2 m ³ and 303°C respectively is cooled at constant pressure until its volume becomes 0.1 m ³ . The gas is then heated at constant volume until its pressure is doubled.			
	Determine EACH of the following:			
	(a) sketch the processes on a pressure-volume diagram;	(2)		
	(b) the temperature of the gas after the initial cooling process;	(3)		
	(c) the temperature after the heating process.	(3)		

a)
b)
$$P_1 = P_2 = 1$$

 $V_1 = 0 \cdot 2m^3$
 $T_1 = 303^{\circ}C = 5\pi (K T_2 = x = 288 K T_3 = x)$
thats nasty ^ for dyslexics
easy to get mixed up with Q1
 $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$
 $\frac{O \cdot 2}{T_1} = \frac{P_2 V_2}{T_2}$
 $\frac{O \cdot 2}{T_2} = \frac{O \cdot 1}{2c}$
 $\frac{1}{T_2} = \frac{P_3 V_2}{T_3}$

b) stoich
$$\sigma xy = 1.230768 + 0.307692$$

= 1.330768 + 0.461538
= 1.6923 ky
= 1.330768 + 0.307692

$$x = 1.53846 = 6.688956 \text{ ky}$$

6.688956 ×1.3 = 8.69564 kg

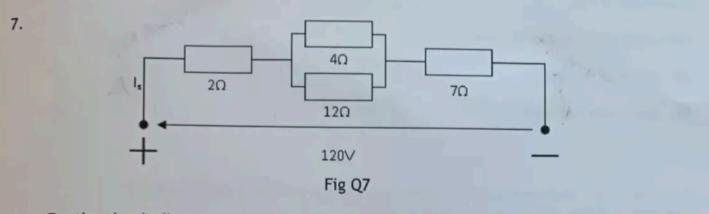
4.	 (a) State TWO desirable properties of refrigerants. (b) In a vapour compression refrigeration plant, briefly explain EACH of the following: (i) under-cooling and its effect; (ii) the cause of the low pressure side into which expansion occurs through the TEV; (iii) How the refrigerant flow rate is controlled. 	 (1) (2) (2) (3)
5.	State and describe the THREE modes of heat transfer, giving an example of each.	(9)
6.	A 2 stroke diesel engine is tested over a 24 hour period and uses 18 tonnes of fuel. The power of the engine is tested using a dynamometer which gives a steady state torque reading of 50 kNm at 800 rpm. The mechanical efficiency was later found to be 87%.	
	Calculate EACH of the following:	
	(a) the brake power;	(3)
	(b) the indicated specific fuel consumption;	(3)
	(c) the brake thermal efficiency.	(3)
	Note: the calorific value of the fuel = 44 MJ/kg	

$Imep = \frac{A\phi}{L}$	P=xplan	$l_{sfc} = \frac{k_g}{k_{vh}} = \frac{k_g}{k_v} = \frac{consump}{IP}$
$BP = T2\pi N$	$E_{ff} = \frac{BP}{IP}$	Ble= BP consump x c-1 content Kg/sec J/kg
		Kg/sec J/kg

$$\begin{array}{l} \text{BP} = 72\pi N \\ T = 50,000 \\ N = \frac{500 \, \text{Rev}}{m \ln} = 13.333 \, \frac{3}{2} \, \frac{1}{2} \, \frac{3}{2} \, \frac{3}{2} \, \frac{3}{2} \, \frac{1}{2} \, \frac{3}{2} \, \frac{3$$

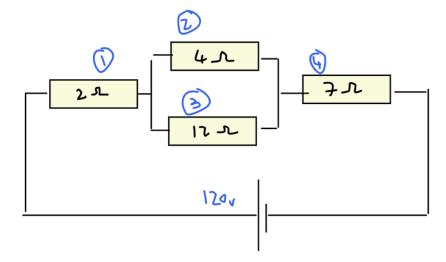
$$b) \ |s\rangle c = \frac{t_g/h}{k_v}$$

$$consumption = \frac{18000}{24} = 750 kg/h$$


$$ff = \frac{BP}{1P}$$

$$0.81 = \frac{4188790.205}{x}$$

$$x = \frac{4188790.205}{0.87}$$

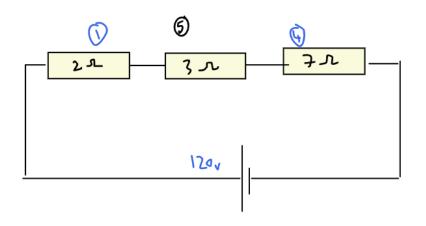

$$l_{sfc} = \frac{k_g/h}{k_v} = \frac{7sc}{4814701} = 0.1557729 k_g/k_h$$

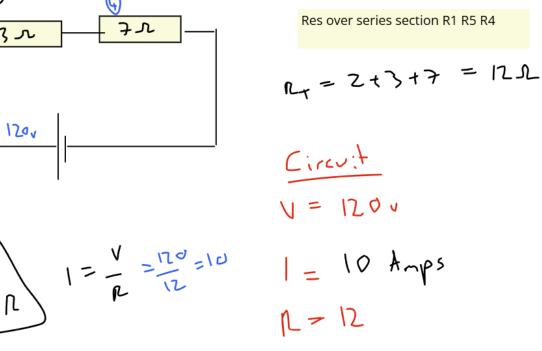
c)
$$B_{te} = \frac{BP}{(ansump \times Calcontent)}$$

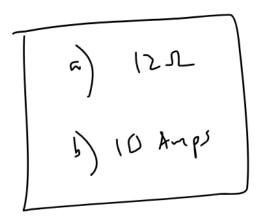
 $K_{g/sec} = \frac{J}{K_{g}}$

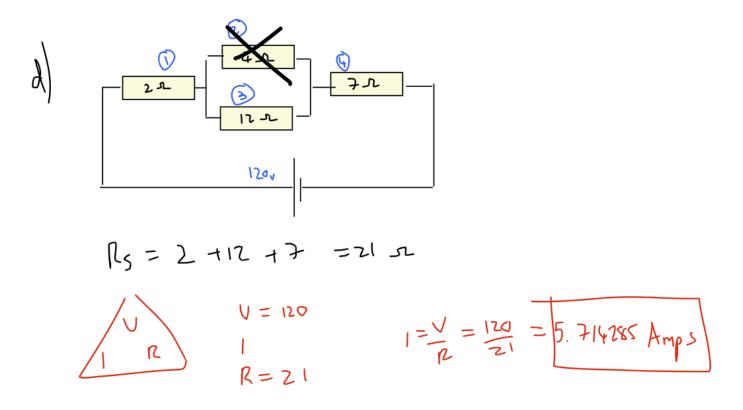
For the circuit diagram in Fig Q7, determine EACH of the following:

((a)	the total circuit resistance;	(2)
((b)	the circuit current;	(2)
((c)	the potential difference across the 7 Ω resistor;	(2)
((d)	the circuit current if the 4 Ω resistor went open circuit.	(2)

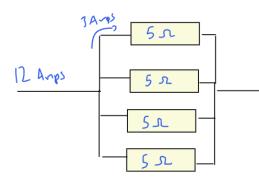



 $R_{s} = R_{1} + R_{2}$ $\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$ V = 1V

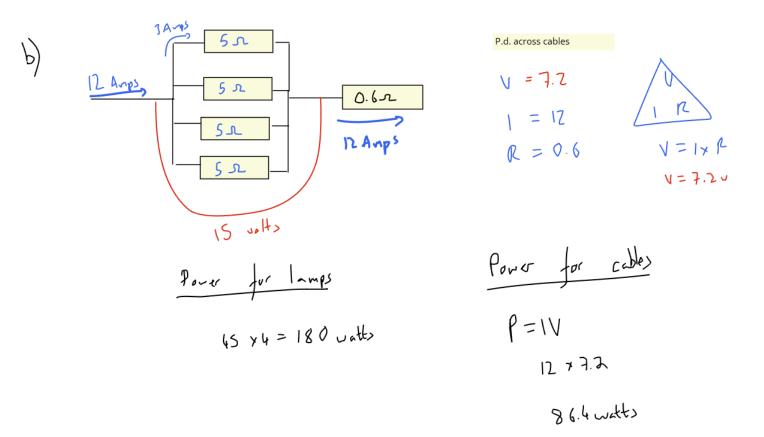

combine resistors in parrallel over R2 and R3

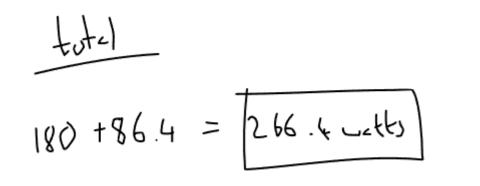

$$\frac{1}{r_{1}} = \frac{1}{4} + \frac{1}{12}$$

$$R_{+} = 3 \Lambda$$



8.	(a)	List FOUR means by which electricity may be produced.	(2)
	(b)	State the THREE main effects of an electric current.	(3)
	(c)	State TWO practical examples of EACH effect in Q8(b).	(3)
9.	with of 5	The system is fed from a d.c. supply. Four lights are connected in parallel in a supply current of 12 A and line current of 3 A. The lamps have a resistance Ω each.	
	(a)	the power dissipated by each lamp;	(3)
	(b)	the total power consumed by the circuit if the total resistance of the cables was 0.6 Ω ;	(3)
	(c)	the supply voltage.	(2)


$$\frac{1}{R_p} = \frac{1}{5} \star \frac{1}{5} + \frac{1}{5} \star \frac{1}{5}$$


$$R_T = \frac{5}{4} = 1.25 \Lambda$$

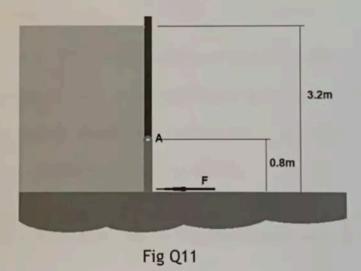
$$\frac{Crevit}{V = 15 \text{ Volts}} \qquad V = 17 R$$

$$I = 12 \text{ Arps} \qquad I R \qquad V = 12 \times 1.25 = 15 \text{ Volts}$$

$$\frac{C \operatorname{Vec} k}{V} \int \frac{V}{1 \operatorname{ech} b \operatorname{vl} k} \int \frac{V}{V} \int \frac{V}{V}$$

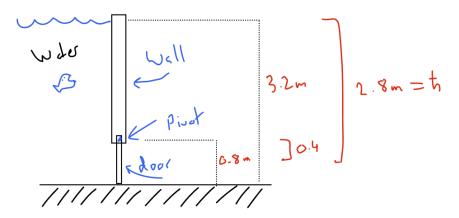
A conductor with an effective length of 500 mm and a diameter of 12.5 mm is 10. carrying a current of 45 A at right angles to a magnetic field. The force on the conductor is 7 N. Calculate EACH of the following: (4)(a) the flux density; (4)(b) the magnetic flux. F= BIL Sir Q B = ~) Ý 6/ F=7N = 0.3 ||| | Tß B=x þ $A = \left(\frac{12.5}{2000}\right)^2 TT = 1.227184 \times 10^{-4} m^2$ 1 = 45 A $l_{z} = 0.5 m$ $7 = x (45 \times 0.5)$ BA= Ø 0.31111 = x 0.31111 × 1.227184 ×104 = Ø 0.31111 Tela 3.8179 ×10-5 () J [] - 101% +

(4)

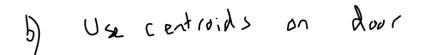

(4)

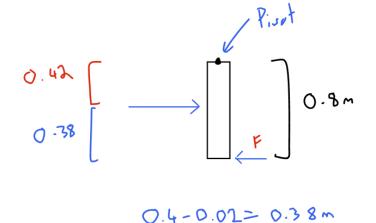
11. A section of a water retaining wall with a gate at the bottom is shown in Fig Q11. The gate is 0.7 m wide and is hinged at point A.

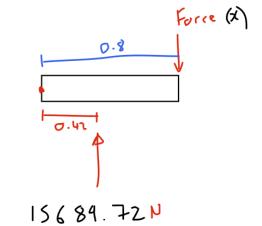
Determine EACH of the following:


- (a) the thrust force on the gate when the water level is 3.2 m;
- (b) the minimum force, F, required at the bottom of the gate to keep the gate closed if the thrust force acts at a point 0.02 m below the gate centroid.

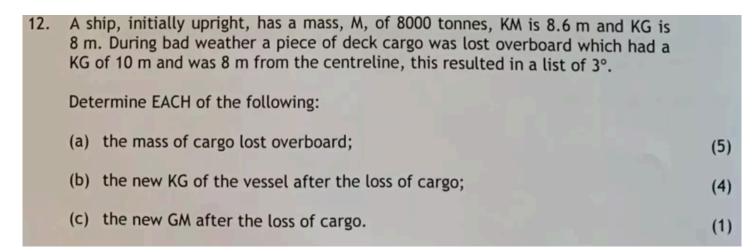
Note: density of water is 1020 kg/m³

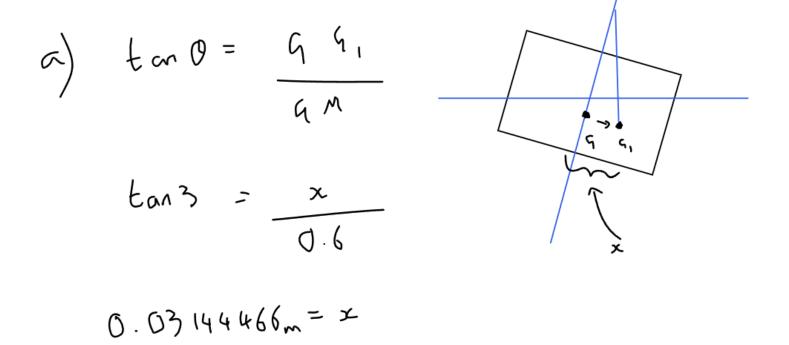



a)
$$F = p g$$
 A th
 $p = 1020$
 $g = 9.81$
 $A = 0.8 \times 0.7 = 0.56 n^{2}$
 $h = 2.8$


took me a while to understand this question because of the bad diagram, and had to do it twice

F= 1020 × 9.81 ×0.56 ×2.8 = 15689.72 N




taking moments about A

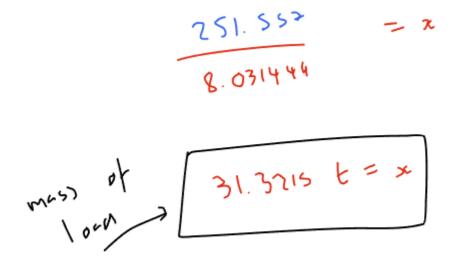
sum of clockwise moments = sum of anticlockwise moments

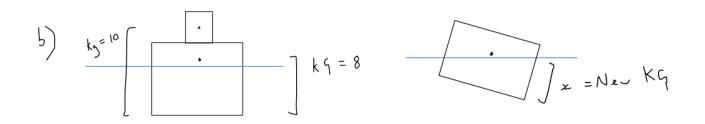
$$F \times d = F \times d$$

x (0.8) = 15689.72 x 0.42

minimum force required to keep door closed

shift of centre of gravity


now ship is in equilibrium Sum of anticlockwise moments = sum of anticlockwise moments


$$F \times D = F \times d$$

$$(M - load) D = load \times distance$$

$$(8000 - 5) 0.03144411 = x(8)$$

251.557 - 0.03144466x = 8x 251.557 = 8.0314446 x

	Name	Mass (E) Force	distance	Moment	Dir
	Ship	7968.68	7C	7968.68 <u>×</u>	(
	load	31.521	10	313.21	2
Shi	p + 1002	8000	8	64000	A

taking moments about K

sum of clockwise moments = sum of anticlockwise moments

- $7968.68_{x} + 313.21 = 64000$ $x = \frac{4000 313.21}{79(8.68)}$ Now $Kg = x = \frac{7.99214}{7.99214}$
- () Neu $G_{M} = K_{M} K_{G}$ 8.6 - 7.99214 = 0.60786 m

assuming meta centre is unchanged (for 1 mark)