GENERAL ENGINEERING SCIENCE I

Attempt ALL questions

Marks for each question are shown in brackets.

Section A

10
$$\frac{10}{90}$$
 1. Simplify EACH of the following giving the answer as a mixed number:
(a) $\left(\frac{2}{5} + 3\frac{4}{3}\right) \times 2\frac{1}{6}$ (4)
5 $\frac{10}{13}$ (b) $\left(3\frac{4}{7} \div 1\frac{4}{9}\right) \times 2\frac{1}{3}$ (4)

 $\mathcal{G}2.30\%$ ^{2.} $\sqrt{(a)}$ Engine A has a cubic capacity of 21 litres, engine B has cubic capacity of 32 litres. Express as a percentage how much larger Engine B is compared to Engine A. (4) P+R SS

(b) Rearrange the following expression to make S the subject of the expression:

$$P \times R^n = Q \times S^n \tag{4}$$

$$\sqrt{3}$$
. \sqrt{a} Define Pythagoras' theorem. (2)
(2)
(2)
(2)
(3) \sqrt{b} The triangle shown in Fig Q3 has two equal angles at A and C of 25°.

Determine the length of the side AC.

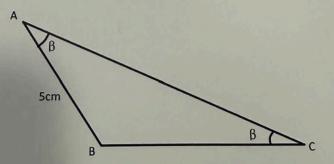


Fig Q3 (not to scale)

(6)

Full written solutions. Online tutoring and exam Prep

 $\sqrt{4}$. 200 ice cubes are put in an empty cylindrical container with a hemispherical base. The ice cubes have a side dimension of 3 cm. If the container has a diameter of 22 cm calculate the maximum depth of water remaining after the ice has melted.

1295.47421m

¥= 1.4

Note: take the density of ice as 912 kg/m³ and the density of water as 1000 kg/m³

 $\sqrt{5}$. (a) State the general expression for a straight line graph and explain the terms used.

(b) Prepare a data table to plot an x,y graph in the range of $-3 \le x \le +3$ for the expression:

$$Y = \frac{3}{2}x - 2$$
 (3)

(c) Plot the graph of the data prepared in Q5(b).

(3)

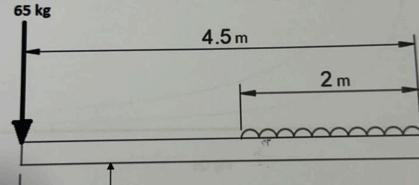
(2)

(8)

(d) Using the graph plotted in Q5(c) find the approximate Y value when $x \simeq 2.3$. (2)

(8)

Section B


V 7.

2 Test 1 Martin - I Martin Contraction and Advances and Advances and Advances and Advances and Advances and Adv	
Define EACH of the following terms with examples:	(2)
(a) Stable, Neutral and Unstable equilibrium;	(2)
(b) Scalar and Vector Quantities;	(2)
(c) Moments;	(2)
(d) Centroid.	(2)
(d) Centroid.	

Fig Q8 shows a loaded steel bar, of uniform cross section, 4.5 metres long having 8. a mass of 40 kg.

Determine the required mass per metre of the UDL to give a balanced equilibrium condition about the fulcrum.

fulcrum

1m

Fig Q8 (not to scale)

	~	9. Ignoring any effects of friction, the velocity of a 60 kg mass is uniformly increased from 1.5 m/s to 3.0 m/s in 8 seconds. The mass is then uniformly retarded at 0.4 m/s ² from 3.0 m/s until the mass just comes to rest. Determine EACH at the mass just comes to rest.	
		Determine EACH of the following:	
2)	0518 45	(a) the accelerating force required;	
)	7.5	(b) the time taken to come to rest for the retardation period:	(2)
	11.25	(c) the distance travelled during the retardation period.	(3)
	11.25	the retardation period.	(3)
	J 10	A box with a mass of 35 kg rests on a horizontal surface. The box has a force of 130 N applied to it in a plane parallel to the horizontal surface aligned with the centre of mass of the box.	
		Determine EACH of the following:	
5	3.7143	(a) the acceleration of the box with no friction;	(3)
	0-757	(b) the acceleration of the box when a friction coefficient of 0.3 exists between the box and the surface.	(5)
	√11.	A pneumatic actuator 0.6 m long has a rod diameter of 15 mm which when subjected to an axial pull of 13 kN extends by 0.25 mm.	
		A pneumatic actuator 0.6 m long has a rod diameter of 15 mm which when subjected to an axial pull of 13 kN extends by 0.25 mm. Determine EACH of the following:	
	pi(1)1.1	Determine EACH of the following: (a) the direct stress in the rod;	(4)
9.11	111111.1 6666 6667 ×10 ⁻⁴	 (a) the direct stress in the rod; (b) the direct strain in the rod; 	
9.11	111111.1 6666 6667 ×10 ⁻⁴	Determine EACH of the following: (a) the direct stress in the rod;	(4)
9.11	111111.1 6666 6667 ×10 ⁻⁴	 (a) the direct stress in the rod; (b) the direct strain in the rod; 	(4) (4)
9.11	111111.1 6666 6667 ×10 ⁻⁴	 (a) the direct stress in the rod; (b) the direct strain in the rod; 	(4) (4) (2)
9.11	1111711.1 6666 666 67 ×10 ⁻⁴ 4666 66666 ×10 ⁴ 12.	Determine EACH of the following: (a) the direct stress in the rod; (b) the direct strain in the rod; (c) the Modulus of Elasticity (E) for the rod. A power winch raises a mass of 1100 kg through a distance of 12 m in 20 second The power input to the system in measured at 8 kW.	(4) (4) (2)
9,11 5.54	111111.1 666666667×10 ⁻⁴ 4666666665×10 ⁴ J2.	Determine EACH of the following: (a) the direct stress in the rod; (b) the direct strain in the rod; (c) the Modulus of Elasticity (E) for the rod. A power winch raises a mass of 1100 kg through a distance of 12 m in 20 second	(4) (4) (2) ds.
9,11 5.54 1249	171171.1 666666667 ×10 ⁻⁴ 4666666666 ×10 ⁴ J2.	Determine EACH of the following: (a) the direct stress in the rod; (b) the direct strain in the rod; (c) the Modulus of Elasticity (E) for the rod. A power winch raises a mass of 1100 kg through a distance of 12 m in 20 second The power input to the system in measured at 8 kW. Determine EACH of the following:	(4) (4) (2)