
1. <u>1</u> 8 X	GENERAL ENGINEERING SCIENCE II	
a la co	Attempt ALL questions	
	Marks for each question are shown in brackets.	
	Section A	
S	1. (a) Why are the units for specific heat capacity J/kgK.	(3)
139.964	(b) A bronze casting has a mass of 45 kg and a temperature of 400°C. What is its temperature after losing 5100 kJ of heat energy?	(5)
	Note: Specific Heat Capacity of Bronze = 435 J/kgK.	
V2.	(a) Define Charles's Law for a perfect gas.	(2)
	(b) A perfect gas has a volume of 45 litres at a pressure and temperature of 120 kPa and 30°C respectively. The temperature of the gas rises to 180°C at constant pressure.	
	Calculate EACH of the following:	
0222 FF~3	(i) the increase in the volume of the gas in m ³ ;	(3)
G5 NG	(ii) the mass of gas.	(3)
	Note: for the gas R = 0.29 kJ/kgK	
√3.	Butane (C_4H_{10}) is completely burned in 30% excess air by mass.	
0 5.		
and a start	Calculate EACH of the following:	
rsdeug	(a) the mass of carbon dioxide in the exhaust gases per kg of fuel;	(4)
IG	(b) the mass of nitrogen in the exhaust gases per kg of fuel.	(4)

$\sqrt{4}$. (a) State TWO desirable properties of refrigerants.	(1)
(b) In a vapour compression refrigeration plant, state the primary function of EACH of the following:	
(i) the condenser;	(3)
(ii) the expansion valve;	(3)
(iii) the evaporator.	(3)
$\sqrt{5}$. (a) Briefly explain why metals expand when beated	
, metals expand when heated.	(3)
(b) A copper ball has a diameter of 40.25 mm at a temperature of 550°C.	
<i>r-y3</i> ² Calculate the temperature at which the ball will just drop through a hole of 40 mm diameter.	(E)
Note: co-efficient of linear expansion of steel = $0.000018/ $ °C	(5)
$\sqrt{6}$. Define EACH of the following terms in relation to engine cycles:	
(a) Indicated mean effective pressure;	(2)
(b) Brake specific fuel consumption;	
(c) Mechanical efficiency;	(2)
	(2)
(d) Brake thermal efficiency.	(2)

1		
√ 10.	A conductor with an effective length of 300 mm and a diameter of 9.5 mm when carrying a current of 25 A at right angles to a magnetic field. The force on the conductor is 18 N.	
	Calculate EACH of the following:	
47	(a) the flux density;	(4)
10 ⁻⁴ W	(b) the magnetic flux.	(4)
" п.	A water tank shares a bulkhead with the engine room. The common bulkhead is rectangular, 3.5 m high and 2 m wide. The amount of water in the tank is measured using a pressure transducer in the base of the tank. The density of water is 1000 kg/m ³	
	Determine EACH of the following:	
.5N	(a) the thrust on the bulkhead when the tank is filled;	(4)
тира	(b) the pressure indicated on the transducer, in kilopascals, when the tank is half full.	(4)
√12.	A vessel has a displacement volume of 15000 m^3 in sea water of density 1025 kg/m ³ .	
m	A double bottom tank measuring 16 m long x 9.5 m wide x 1.8 m deep is positioned symmetrically, either side of the ships centre line and is initially empty.	
	The tank is now completely filled with fresh water of density 1000 kg/m ³ .	
	Calculate the change in position of G, given that the initial KG = 3.8 m .	(8)

5

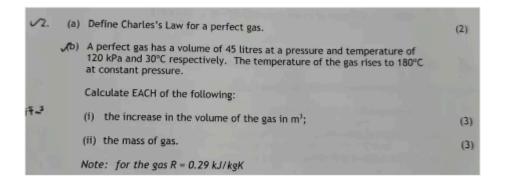
٦

 1. (a) Why are the units for specific heat capacity J/kgK.
 (3)

 (b) A bronze casting has a mass of 45 kg and a temperature of 400°C. What is its temperature after losing 5100 kJ of heat energy?
 (5)

 Note: Specific Heat Capacity of Bronze = 435 J/kgK.

$$Q = mc\Delta t$$


$$Q = s_{1}00,000 J$$

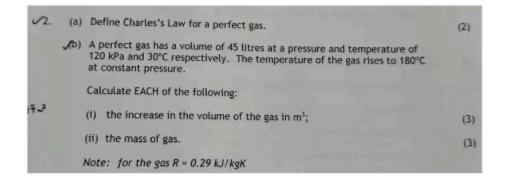
$$m = 45 ky$$

$$c = 435 J/kyK$$

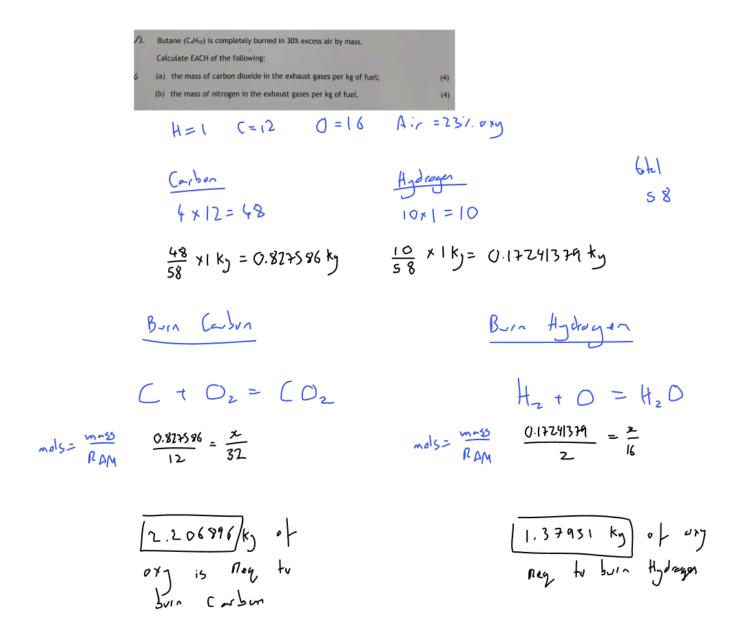
$$\Delta t = x$$

$$\frac{Q}{mc} = \Delta t$$

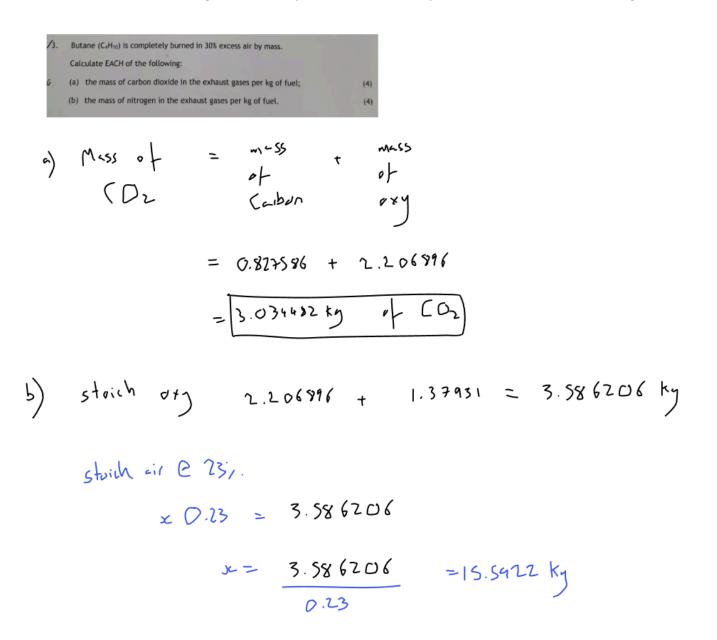
$$P_{1} = 120_{1}000 P_{2} = 120_{1}000 P_{2}$$


$$U_{1} = 0.045 m^{3} \qquad U_{2} = 30^{2} C = 30^{3} K \qquad T_{2} = 180^{2} C = 453$$

$$\frac{0.045}{303} = \frac{x}{453}$$


$$V_{0}|_{2} - V_{0}|_{1} = \Delta V_{0}|_{0}$$

 $0.0672772 m^{2} - 0.045$
 $0.012277m^{3}$ increan


bii)
$$P_{1V_{1}} = m r t$$
, $\frac{P_{V}}{R t} = m$

$$\frac{120,000 \times 0.045}{290 \times 303} = 0.0614544 \text{ Kg}$$

Full written solutions. Online tutoring and exam Prep

1.1

indule exces @ 30%.

14.	(a) Sta	te TWO desirable properties of refrigerants.	(1)
	(b) In a EAC	vapour compression refrigeration plant, state the primary function of H of the following:	
	(i)	the condenser;	(3)
	(ii)	the expansion valve;	(3)
	(iii)	the evaporator.	(3)

ye before quality way multiple equations where the 42.5 mm at a temporature of 50°.
The dependence of 42.5 mm at a temporature of 50°.
The dependence of 42.5 mm at a temporature of 50°.
The dependence of the equation of steel - 0.000000 v

$$\int +47p \sin^2 n = Ne - D$$

$$\int +47p \sin^2 n = Ne - D$$

$$\int +0 + \Delta + 1$$

$$\langle 0.25 + 40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.0000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

$$40.25 (0.000000) \times = 400 - 40.25$$

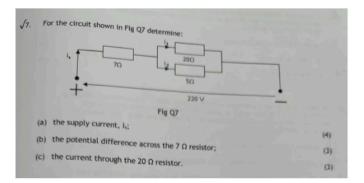
$$\chi = -0.25$$

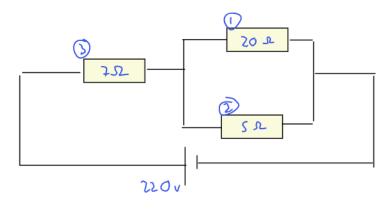
$$40.25 (0.000000) \times = 400 - 40.25$$

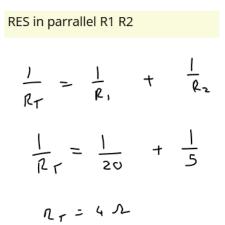
$$\chi = -0.25$$

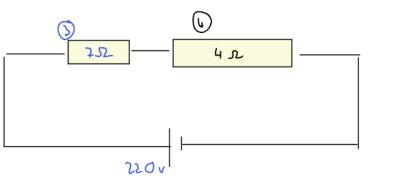
$$40.25 (0.000000) \times = 400 - 40.25$$

$$\chi = -0.25$$

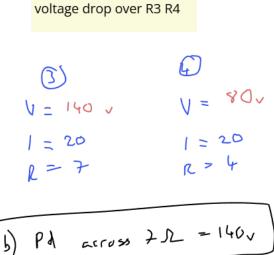

$$40.25 (0.000000) \times = 400 - 40.25$$

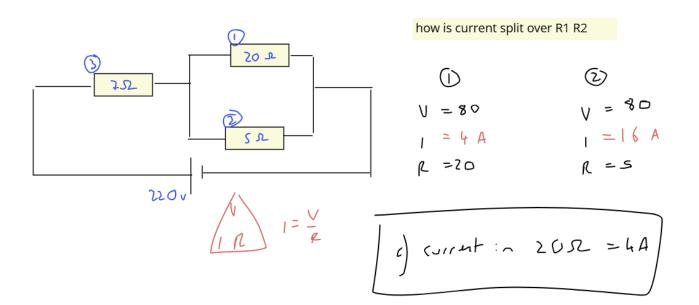

$$\chi = -0.25$$

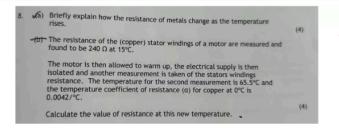

$$40.25 (0.00000) \times = 400 - 40.25$$


$$\chi = -0.25$$

$$\chi$$


$$\begin{array}{c} V \\ V \\ I \\ R \end{array} = \frac{V}{R} = \frac{220}{11} \qquad I \\ R \\ R \end{array}$$


 $R_{\tau} = R_3 + R_4$ 7 + 4 = 11 - 2


res in series

a) supply current 20 Amps

first we find the resistance at zero degree C, this is our reference temp

$$R_{0} = r$$

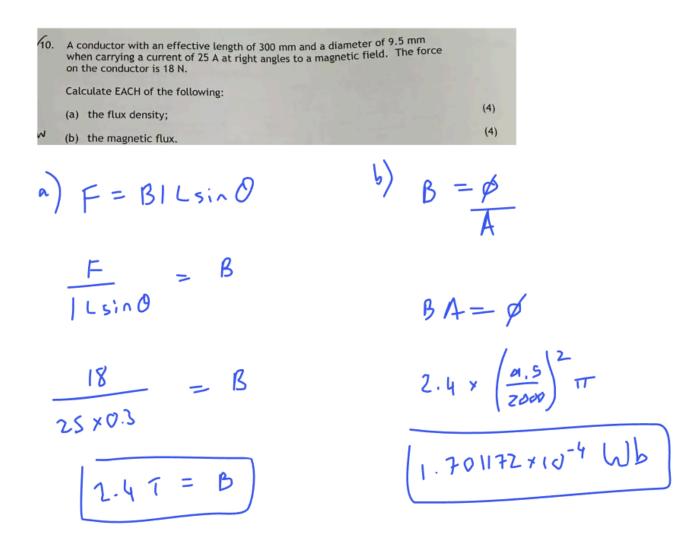
$$R_{15} = 240 \ P$$

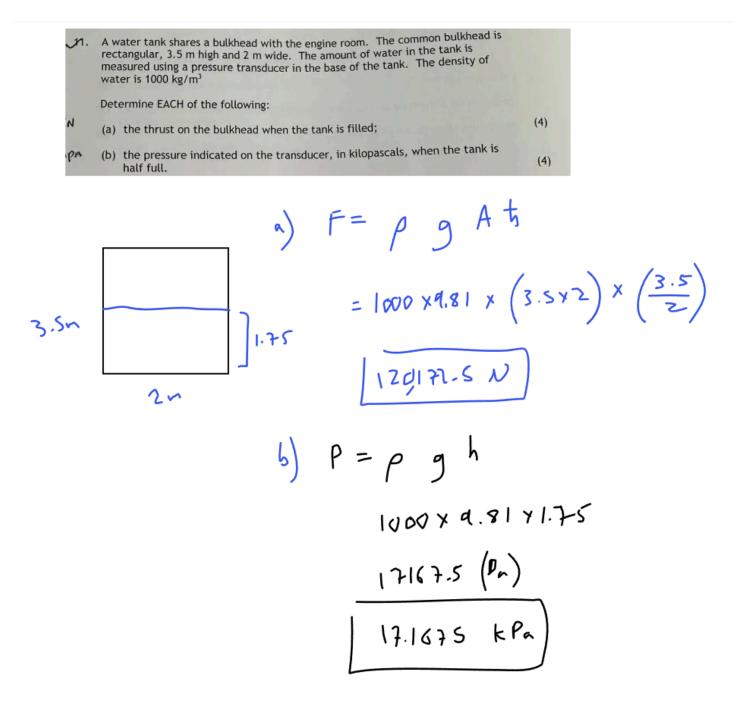
$$\alpha = 0.0042 \ / \circ C$$

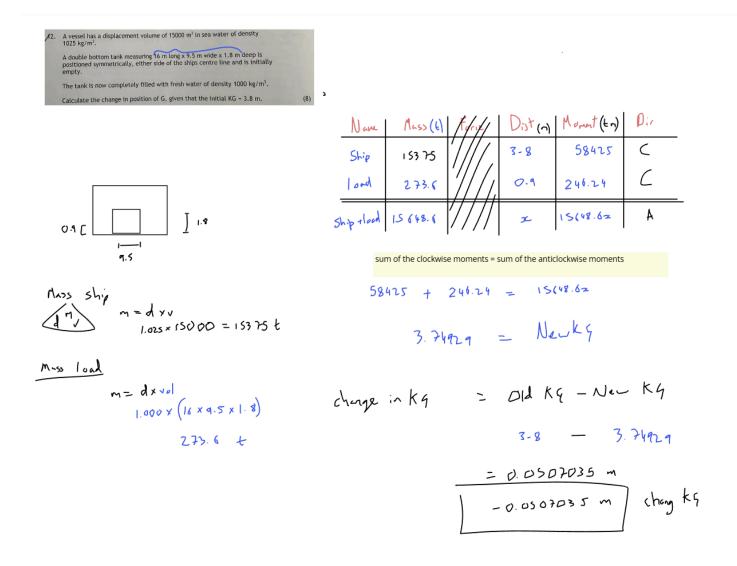
$$\Delta t = 15$$

$$R_{0} \left(1 + \alpha \Delta t \right) = R_{L}$$

$$\propto \left(1 + 0.0042 \left(15 \right) \right) = 240$$


$$R_0 = \chi = 225.7761 \Omega$$


next find res at target temp (65°C)


$$R_{65} = x$$

-

$$R_{0}(1 + A\Delta t) = R_{65}$$

 $23.7761(1 + 0.0042 + 65)$
 $287.413 = R_{65}$

