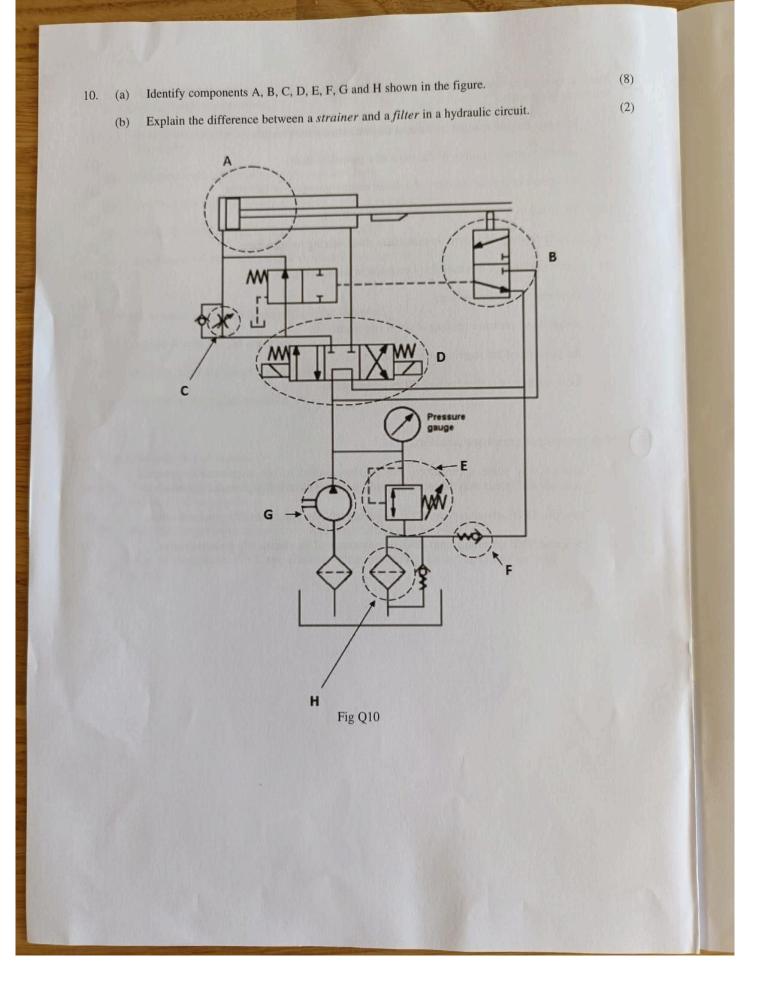
Full written solutions.

Marl	npt ALL questions as for each part question are shown in brackets	
1.	With reference to the manufacture of carbon fire components:	
	(a) describe EACH of the following processes and its advantages:	
	(i) vacuum bagging;	(2)
	(ii) autoclave curing;	(2)
	(iii) resin transfer moulding.	(3)
	(b) list the type of component that EACH process described in part (a) is best suited to.	(3)
2.	With reference to case hardening steel components:	
	(a) describe the changes that occur with this process;	(3)
	(b) explain why it may be required;	(2)
	(c) describe EACH of the following processes:	
	(i) a simple shipboard process;	(3)
	(ii) solid pack carburising.	(2)
(3)	(a) List FOUR methods for non-destructive crack detection.	(4)
	(b) Describe TWO procedures from the methods listed in part (a).	(6)
(4.)	Explain EACH of the following engineering terms:	
	(a) hardness;	(2)
	(6) proof stress;	(2)
	(C) ultimate tensile strength (UTS);	(2)
	(d) Young's Modulus;	(2)

(5.)	Star	State, with reasons, a different welding/brazing/soldering process that is best suited to effect EACH of the following situations:	
	<u>(a)</u>	joining two lengths of aluminium bronze seawater pipe, both pipes having the same diameter;	(2)
	(b)	attaching a stainless steel handrail to a steel hull;	(2)
	(c)	re-attach a section of broken flange on a cast iron pump casing;	(2)
	(d)	attaching a brass flange onto a stainless steel pipe;	(2)
	(e)	attaching a 1.0 mm steel section to 10 mm thick deckhead plate.	(2)
6.)	With	a reference to Impressed Current Cathodic Protection of a vessel's hull:	
	(a)	explain why it may be required;	(2)
	(b)	describe, with the aid of a sketch, the key points of installation;	(5)
	(c)	describe its operating principle.	(3)
•	With	reference to a thermistor:	
	(a)	state the materials used in their construction, the principle of operation and the reason for their use on vessels;	(4)
	(b)	state the temperature range over which they are able to operate:	(1)

(c) state, with reasons, FIVE applications where thermistors may be found on board a vessel. (5)


8.

(9.

State	e a type of transducer or measuring device suitable for measuring EACH of the wing parameters:	
(a)	accurate remote reading of a diesel engine exhaust temperature;	(1)
(b)	accurate remote reading of the twist of a propeller shaft;	(1)
(c)	accurate and remote position of a diesel engine governor or fuel rack;	(1)
(d)	the speed of a ship's main propeller shaft in RPM;	(1)
(e)	remote reading of a ship's intermediate shaft bearing temperature;	(1)
(f)	remote reading of lubricating oil pressure in a diesel engine;	(1)
(g)	flow rate of a water maker;	(1)
(h)	simple local pressure reading of ships fire-main;	(1
(i)	the position of the steering gear or rudder;	(1
(j)	local reading of jacket cooling water temperature.	(1
	and the second	

With reference to pneumatic actuators:

(a)	explain why some applications may be best suited to use a pneumatic powered actuator and others may be more suited to using an electrically powered actuator;	(6)
(b)	describe ONE advantage and ONE disadvantage of a pneumatically powered valve;	(2)
(c)	describe ONE advantage and ONE disadvantage of an electrically powered valve.	(2)

