CERTIFICATES OF COMPETENCY FOR ENGINEERS (YACHT)

EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF MARITIME AND COASTGUARD AGENCY

SMALL VESSEL CHIEF ENGINEER UNLIMITED

058-01 - APPLIED MARINE ENGINEERING

FRIDAY, 18 November 2022

1400-1600 hrs

Examination paper inserts:

Notes for the guidance of candidates:

- 1. Candidates should note that 100 marks are allocated to this paper. To pass candidates must achieve 50 marks.
- 2. Non-programmable calculators may be used
- 3. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:

Candidate's examination workbook

APPLIED MARINE ENGINEERING

Attempt ALL questions Marks for each part question are shown in brackets

1.	(a)	Define the term <i>stainless steel</i> , making reference the percentage quantities of its TWO main constituents.				
	(b) With reference to EACH of the following grades of stainless steel, list ONE unique properties and a common use that utilises this property:					
		(i)	ferritic;	(2)		
		(ii)	austenitic;	(2)		
		(iii)	martensitic.	(2)		
2.	With reference to manufacturing components from aluminium:					
	(a)	expla	in why it may be necessary to anneal aluminium;	(2)		
	(b)	descr	tibe the problems encountered when working with annealed aluminium;	(4)		
	(c)	desci	tibe how it could be annealed on board a vessel.	(4)		
3.	With reference to fatigue failure of components:					
	(a)	descr	tibe how material fatigue testing is carried out in the laboratory;	(2)		
	(b)	sketc	the surface appearance of a fatigue fracture;	(2)		
	(c)	desci	ribe the THREE stages of the failure;	(3)		
	(d)	list t prope	he methods available on board to limit the possibility of fatigue failure to a eller shaft.	(3)		
4.	With reference to the attachment of aluminium superstructures to a steel hull:					
	(a)	expla weld	in why it is not normal practice to join the two components using conventional ing techniques;	(2)		
	(b)	state bond	the particular problems associated with the aluminium superstructure where it is ed to a steel hull;	(2)		
	(c)	outlii integ	ne the maintenance that should be carried out to ensure the continued structural rity of the vessel;	(2)		
	(d)	sketc super	h a typical transition joint that could be utilised to attach an aluminium rstructure to a steel hull.	(4)		

5.	(a)	Describe the problems associated with two dissimilar metals in contact in the presence of sea water.	(4)			
	(b)	Describe THREE different methods that may be used to reduce the problems described in part (a).	(6)			
6.	With reference to osmosis in glass reinforced plastic (GRP) hulls:					
	(a)	explain the process of osmosis and the method by which osmotic blisters occur in service;	(6)			
	(b)	describe a procedure for the local treatment of a single blister.	(4)			
7.	(a)	Explain, with the aid of a sketch, the design and operation of a thermocouple.	(8)			
	(b)	State ONE limitation of the thermocouple, stating how this is overcome in practice.	(2)			
8.	Explain EACH of the following control terms:					
	(a)	settling time;	(2)			
	(b)	repeatability;	(2)			
	(c)	dead zone;	(2)			
	(d)	hysteresis;	(2)			

(e) proportional bandwidth. (2)

9. The figure shows a tank filling with fluid at a variable rate, and an output regulated manually by an operator controlling a value.

Explain, with the aid of a control block diagram, the control process taking place that enables the operator to maintain a constant tank level, 'h' for varying rates of fluid flow input.

Note: fluid flow in will always be less than the maximum flow out with the valve full open.

(10)

- 10. (a) Identify components A, B, C, D, E, F, G and H shown in the figure. (8)
 - (b) Explain the difference between a *strainer* and a *filter* in a hydraulic circuit. (2)

