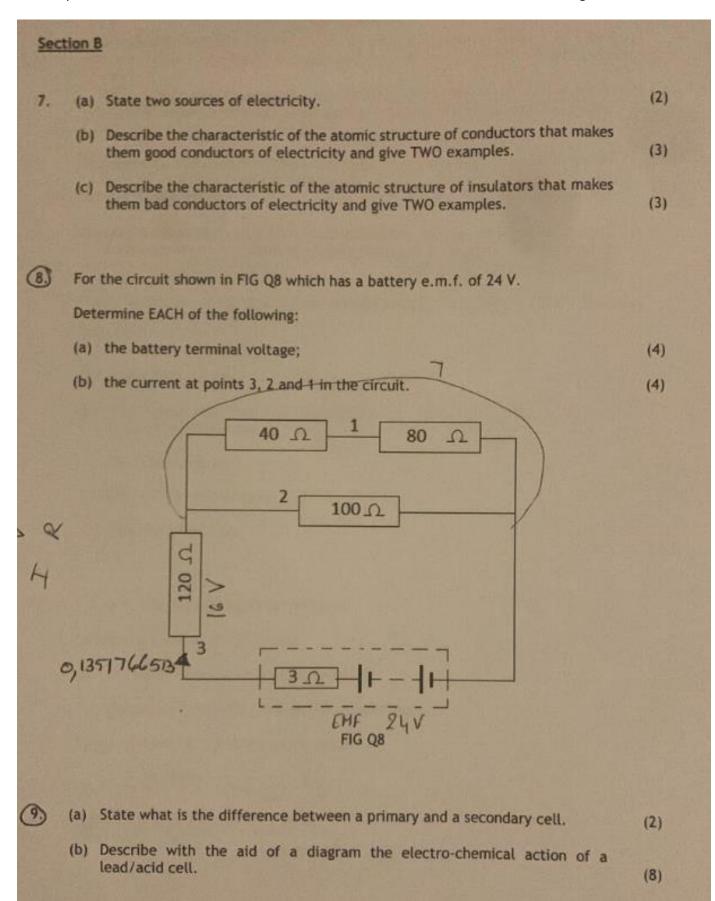
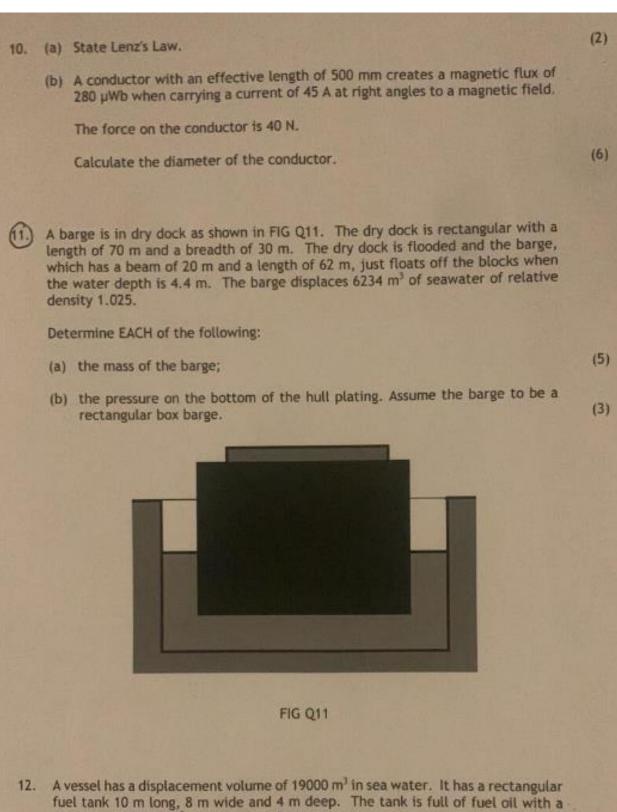
GENERAL ENGINEERING SCIENCE II Attempt ALL questions Marks for each question are shown in brackets.								
					Sect	ion A		
					1.	(a)	Explain what is meant by the enthalpy of fusion.	(2)
	(b)	100 grams of ice at -5°C is heated with 40 kJ of energy.						
		Determine the final state and temperature.	(6)					
		Note: Specific heat capacity of ice = 2.11kJ/kgK, Specific heat capacity of water = 4.18kJ/kgK, Enthalpy of fusion of water = 335kJ/kg						
2.	(a)	State Boyles Law.	(2)					
	(b)	A perfect gas at an initial pressure, temperature and volume of 2.75 bar, 185°C and 90 litres respectively is cooled at constant pressure until its temperature is 15°C.						
		Determine EACH of the following:						
		(i) the initial mass of the gas;	(3)					
		(ii) the final volume in m ³ .	(3)					
	Not	te: R = 0.29 kJ/kgK						

0	An 8 cylinder, 4 stroke diesel has a cylinder bore of 350 mm with a stroke of 400 mm. Indicator cards were taken and each had a mean effective height of 22 mm.		
	The power of the engine was also tested using a dynamometer which gives a steady state torque reading of 36 kNm at 800 rpm. Determine EACH of the following:		
	(a) the brake power;	(3)	
	(b) the indicated power;	(3)	
125	(c) the mechanical efficiency.	(2)	
2492	Note: Indicator spring constant was 80 kN/m ² /mm		
4.	(a) State TWO desirable properties of refrigerants.	(2)	
	(b) In a vapour compression refrigeration plant, state the primary function of EACH of the following:		
	(i) the condenser;	(2)	
	(ii) the expansion valve;	(2)	
	(iii) the evaporator.	(2)	
5.	1.5 kg of C ₃ H ₇ is completely burned in air.		
	Determine EACH of the following:		
	(a) the stoichiometric mass of air.required;	(4)	
	(b) the mass of carbon dioxide in the exhaust gases.	(4)	
	Note: assume air is 23% oxygen by mass		


(2)


(6)

(2)

- 6. At point 1 of a cyclic process 0.2 m³ of air at 1.01325 bar and 20°C occupies a cylinder at bottom dead centre. Assume that losses are negligible:
 - (a) at top dead centre, point 2, the gas has been compressed to one tenth of its original volume at point 1. Determine the pressure assuming no temperature rise;
 - (b) at top dead centre there is a heat addition of 60kJ which causes a pressure rise at constant volume to point 3. Determine the pressure as a result of this process;
 - (c) the cycle continues with an expansion from point 3 back to bottom dead centre, point 4, determine the final pressure at point 4 if the temperature remains constant in this process.

Note: R = 0.287 kJ/kgK, Cv = 0.718 kJ/kgK

fuel tank 10 m long, 8 m wide and 4 m deep. The tank is full of fuel oil with a density of 900 kg/m³ and the tank bottom is 1.2 m above the keel. The KG of the vessel is 6.2 m when the tank is full.

Calculate the new KG after all of the oil has been used.

Note: the relative density of sea water is 1.025