2. (a) Define the specific heat capacity of a substance and state the units of such.

- (4)
- (b) 6 MJ of heat energy are required to raise the temperature of 170 kg of copper by 90°C.
 - Calculate the specific heat capacity of the copper.

(4)

july 2014

- A steel component, of mass 750 grammes, has its temperature raised from 17°C to 700 K in 5 minutes.
 - Calculate the rate of energy input required.

(6)

Note: specific heat capacity of steel = 0.52 kJ/kgK

GENERAL ENGINEERING SCIENCE II October 2015

Attempt ALL questions

Marks for each question are shown in brackets.

A steel component, of mass 10 kg, is cooled from a temperature of 450°C by being completely immersed in a tank containing 4 kg of oil at a temperature of 15°C.

Calculate the final temperature of the oil and the steel component, assuming that the heat losses are negligible.

specific heat capacity of steel = 0.48 kJ/kgK Note: specific heat capacity of oil = 1.8 kJ/kgK

December 18, Qu 1

A steel component of 30 kg mass and a temperature of 280°C is immersed in a bath of machine oil.

The volume of the machine oil in the bath is 175 litres and the temperature is 16°C.

The final temperature of the oil and the steel is 28°C. There are no heat losses to the surroundings.

Calculate the specific heat capacity of the oil.

density of machine oil = 880 kg/m3

Note: specific heat capacity of the steel = 0.485 kJ/kgK

October 18, Qu 1

(a) Define specific heat capacity, stating the SI unit. (3)

(b) Calculate the heat energy rejected when a mass of 5 kg of brass is cooled from a temperature of 215°C to 25°C.

Note: for brass c = 0.393 kJ/kgK

april 2014

A mass of 0.4 kg of aluminium is heated to 200°C and then immersed in 1.6 kg of water contained in a copper vessel having a mass of 0.24 kg. The initial temperature of the water and copper is 12°C, the final temperature is 21.8°C and there are no heat losses.

Calculate the specific heat capacity of the aluminium.

(9)

(8)

Note: the specific heat capacity of copper = 0.39 kJ/kgKthe specific heat capacity of water = 4.17 kJ/kgK

oct 2017

A mass of 0.4 kg of aluminium is heated to 198°C and then immersed in 1.55 kg of water contained in a copper vessel having a mass of 0.25 kg. The initial temperature of the water is 12.2°C, the final temperature is 22°C and there are no heat losses.

Calculate the specific heat capacity of the aluminium.

(9)

the specific heat capacity of copper = 0.39 kJ/kgK Note: the specific heat capacity of water = 4.17 kJ/kgK

An aluminium vessel has a mass of 10 kg and contains 6 kg of water at a temperature of 15°C. A mass of 5 kg of water at 35°C is added to the vessel and there are no heat losses.

Calculate the final temperature of the vessel and water.

(8)

Note: the specific heat of aluminium = 0.95 kJ/kgK the specific heat of water = 4.12 kJ/kgK

- 6. (a) Explain what is meant by EACH of the following terms:
 - (i) specific heat capacity;

(3)

(ii) specific enthalpy of evaporation.

(3)

(b) 6 kg of liquid at 20°C has 1240 kJ of heat transferred to it raising its temperature to 92°C.

Determine the specific heat capacity of the liquid.

(3)

dec 2013

- (a) Define the specific heat capacity of a substance and state the units of such.
 - (b) 6 MJ of heat energy are required to raise the temperature of 170 kg of copper by
 - Calculate the specific heat capacity of the copper.

(4)

(4)

Calculate the specific heat capacity of the copper.

$$Q = m (\Delta t)$$

$$Q = t m y = 6 MJ = 6 \times 10^6 J$$

$$M = 170 ky$$

$$\Delta t = 90^\circ$$

$$6,0000000 = C = 392.15686 J/kgt^\circ$$

$$(170000000)$$

july 2014

A steel component, of mass 750 grammes, has its temperature raised from 17°C to 700 K in 5 minutes.

Calculate the rate of energy input required.

(6)

Note: specific heat capacity of steel = 0.52 kJ/kgK

= 520 J/kg K

Enry

$$= m c \Delta t$$

= 0.75 x 520 x 410

159900 Jovles

Rate =
$$\frac{J}{6}$$
 $\frac{159900}{300} = \frac{533 J/s}{300}$ with

700

17+273 = 290

December 18, Qu 1

A steel component of 30 kg mass and a temperature of 280°C is immersed in a bath of machine oil. The volume of the machine oil in the bath is 175 litres and the temperature is 16°C.

The final temperature of the oil and the steel is 28°C. There are no heat losses to the surroundings.

Calculate the specific heat capacity of the oil.

Note: specific heat capacity of the steel = 0.485 kJ/kgK

density of machine oil = 880 kg/m3

$$0i = 175 \text{ Litres}$$

 0.175 m^3

Density =
$$\frac{\text{mass}}{\text{vol}}$$

mass =
$$0 \times 1 = 880 \times 0.175 = 154 \text{ kg}$$

Energy lost by steel = Energy gain by vil

	Starting	Final		
Steel	m = 30 C = 485 t = 280	t= 28	∆t= 252	$Q = m \cdot \Delta t$ $Q = 30 \times 485 \times 252 = 3/66/600$
0;0	m = 154 $c = x$ $t = 16$	t=28	Δt= 12	$Q = mc \Delta t$ $3,666,600 = 154 \times 12 \times C$ C = 1984 J/kyt

October 18, Qu 1

(a) Define specific heat capacity, stating the SI unit.

(b) Calculate the heat energy rejected when a mass of 5 kg of brass is cooled from a temperature of 215°C to 25°C.

Note: for brass c = 0.393 kJ/kgK

specific heat capacity, c [J/kg K] or [kJ/kg K]

the amount of heat energy it takes to change the temperature of 1 kg of the material by 1 K (or 1°C)

b)
$$Q = m < \Delta t$$

= $5 \times 393 \times 190$
= $3 + 3350$ 5

Alu		start	Find	DΨ	Q = mc 1t
Wight.	Alv	$M = 0.4$ $C = \infty$ $t = 2\infty$	t=21.8	178.2°C	Q _{Alv} = 0.4 x (178.2) = 71.28 x J
loss = gain	Copper	m = 0.24 c = 390 t = 12	t=Z1.8	9.8	Qup = 0.24 x390 x 9.8 = 917.28 J
QAlu = Qwater + Qcopper	Water	m = 1.6 c = 4170 t = 12	t=21.8	9.8	Qwa = 1.6 × 4170 ×9.8 = 65385.8 J

$$71.28 \times = 65385.8 + 917.28$$

 $x = 930.2 J/kgk$

	- 7	~ 1	7
\sim	г,	() 1	

A mass of 0.4 kg of aluminium is heated to 198°C and then immerced in 1.55 kg of water contained in a copper vessel having a mass of 0.23 kg. The initial temperature of the water is 12.2°C, the final temperature is 22°C and there are no heat losses.

Calculate the specific heat capacity of the aluminium.

Note: the specific heat capacity of copper = 0.39 k.HkgK the specific heat capacity of water = 4.17 k.HkgK

Loss/Gain		Start	Find	Chenge	C = mc Dt		
,	Alv	m =0.4 c = ==================================	t= 12	Pf= 13(Q = 0.4 x 176 70.42		
9	Wzter	m = 1.55 c = 4170 t = 12.2	t= 22	Δt= 9.8	Q = 1.55 74170 x 9.8 63342.3		
4	حدومهم و	m = 0.25 C = 390 t = 12.2	t= 22	•	Q = 0.25 ×390 × 9.8		
Loss = Gain							
70.4z = 63342.3 + 955.5							
z = 913.32J/kgk							

dec 2016

An aluminium vessel has a mass of 10 kg and contains 6 kg of water at a temperature of 15°C. A mass of 5 kg of water at 35°C is added to the vessel and

Calculate the final temperature of the vessel and water.

Note: the specific heat of aluminium = 0.95 kJ/kgK the specific heat of water = 4.12 kJ/kgK

	ln	Hot	35.(
W. Jet	Cold	150	

Lass/	Name	initial	Find	Δt	Q=mc Dt
L	Hot War	K = 5 $C = 4120$ $E = 35$	t= x	35 -x	·
9	mga (yg	m = 6 c = 4120 t = 15	∤ = ×		$Q = 6 \cdot 4120(x - 15)$ $24720x - 370800$
9	Alv	m = 10 C = 950 E = 15	ヒニス	x -15	Q = 10.950 (x-15) $9500 x - 142500$

Loss = gains