DEC 2014

GENERAL ENGINEERING SCIENCE I

Attempt ALL questions

Marks for each question are shown in brackets.

1. Solve for x in the following equation:

$$2(x-2)+4(x-3)=x-6$$

(8)

2. A right-angled triangle is standing on its base which is 3.8 cm long. The perpendicular height is 2.24 times the base length.

Calculate EACH of the following:

(a) the other base angle;

(3)

(b) the difference between the perpendicular height and the hypotenuse.

(5)

3. A solid right cone has a base diameter of 15 cm and a perpendicular height of 20 cm.

Calculate EACH of the following:

(a) the surface area of the cone in m²;

(5)

(b) the volume of the cone in m³.

(3)

4. The following formula is used when electric cells are connected in series.

$$I = \frac{nV}{R + nr}$$

Make n the subject of the formula.

(8)

5.	A screw jack has a turning lever 260 mm in length which operates a single start screw thread of 5 mm pitch.	
	Calculate the efficiency of the machine when an effort of 230 N just lifts a mass of 3.4 tonne.	(8)
,	A backy in travalling at 4.2 m/s when it is uniformly appalausted to 4.4 m/s in 42	
6.	A body is travelling at 1.3 m/s when it is uniformly accelerated to 6.1 m/s in 12 seconds.	
	Calculate EACH of the following:	
	(a) the acceleration;	(3)
	(b) the distance travelled during the acceleration period.	(5)
7.	An electric drive comes to rest from running speed in 106 seconds and turns through 1236 complete revolutions.	
	Calculate EACH of the following:	
	(a) the running speed in rev/min;	(4)
	(b) the retardation in rad/s².	(4)
8.	A uniform horizontal beam AB is 5 m long and simply supported at its ends. A mass of 220 kg is applied at a point 2.8 m from the left hand end A, while a uniformly distributed load (UDL) of 12 kg/m run is applied over a distance of 1.2 m from end B.	
	(a) Make a simple sketch of the loaded beam.	(2)
	(b) Using the sketch in Q8(a), determine the value of the reactions R_{A} and R_{B} .	(8)

A simple wall crane consists of a jib, 2.75 m long being of hollow tubular section, O.D. 150 mm, I.D. 136 mm and making an angle of 35° to the wall. The tie is 1.93 m long and makes a right angle with the jib. The wall crane is supporting a mass of 1.2 tonne at the jibhead.					
a) Produce a simple dimensional sketch of the crane.	(2)				
b) Calculate EACH of the following:					
(i) the load in the jib;	(2)				
(ii) the load in the tie;	(2)				
(iii) the direct stress in the jib.	(4)				
bulkhead is 5.3 m deep and is flooded to the top on one side only with water density 1014 kg/m^3 .					
alculate EACH of the following:					
the hydrostatic pressure at the base of the bulkhead;	(3)				
the width of the bulkhead if the hydrostatic force under these conditions is	(5)				
) the					

Solve for x in the following equation: 1.

$$2(x-2)+4(x-3)=x-6$$

(8)

$$5 \times -16 = -6$$

$$5x - 16 = -6$$

$$5x = 10$$

$$x = 2$$

 A right-angled triangle is standing on its base which is 3.8 cm long. The perpendicular height is 2.24 times the base length.

Calculate EACH of the following:

(a) the other base angle;

- (3)
- (b) the difference between the perpendicular height and the hypotenuse.
- (5)

a)
hyp

8.512m opp

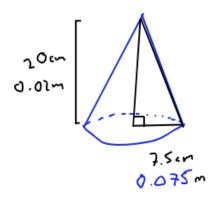
adj

S DH C AH T OA

 $t = \frac{8.512}{3.8}$ $0 = t = \frac{8.512}{3.8}$ A = 65.94

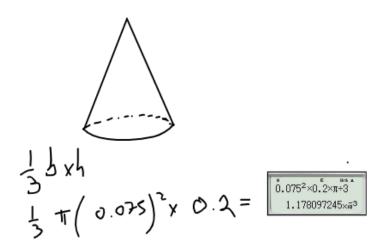
b)
$$\sqrt{3.8^2 + 8.512^2} = 9.32170$$

9.32170 - 8.512 = 0.80970cm


3. A solid right come has a base diameter of 15 cm and a perpendicular height of 20 cm.

Calculate EACH of the following:

(a) the surface area of the cone in m²;


(b) the volume of the cone in m³.

(3)

Area = Corred SA + bee
TRL + TR²
Slant =
$$\sqrt{0.02^2 + 0.075^2}$$
 = 0.2136 /
 $T(0.075)(0.2136) + T(0.075)^2$
0.06799977 m²

Vdure

4. The following formula is used when electric cells are connected in series.

$$I = \frac{nV}{R + nr}$$

Make n the subject of the formula.

(8)

$$\frac{1 R}{(U-1)} = n$$

A screw jack has a turning lever 260 mm in length which operates a single start screw thread of 5 mm pitch.

Calculate the efficiency of the machine when an effort of 230 N just lifts a mass of 3.4 tonne.

Force Retio =
$$\frac{\text{Lipking Force}}{\text{Applied Force}} = \frac{3400 \times 9.8}{230} = \frac{33359}{230} = 145.0179$$

Movement Retio = $\frac{\text{Distance I trush}}{\text{Distance Local trush}} = \frac{2 \times 260 \times 117}{5} = 326.73$

(3)

(5)

$$EH = \frac{145.0174}{326.73} \times 100 = 44.385\%$$

A body is travelling at 1.3 m/s when it is uniformly accelerated to 6.1 m/s in 12

Calculate EACH of the following:

- (a) the acceleration;
- (b) the distance travelled during the acceleration period.

- $S = ut + \frac{1}{2}at^{2}$ V = u + at $S = (u v) + \frac{1}{2}at^{2}$

$$S$$
 $u = 1.3$
 $v = 6.1$
 $v = 6.1$

7. An electric drive comes to rest from running speed in 106 seconds and turns through 1236 complete revolutions.

Calculate EACH of the following:

(a) the running speed in rev/min;

(b) the retardation in rad/s².

(4)

$$S = 1236 \text{ Rev}$$

 $V = \infty$
 $V = 0$
 $V = 0$
 $V = 106 \text{ sec}$

$$V = u + at$$

$$S = \left(\frac{u + v}{2}\right) t$$

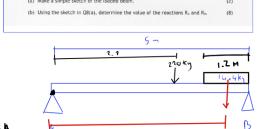
$$S = ut + \frac{1}{2}at^{2}$$

$$1236 = \left(\frac{x+o}{2}\right) 106$$

$$2 = 23.320 \text{ Rev pv sec}$$

$$Running speed = 1399.25 \text{ Rev/min}$$

b)
$$S = 1236 \text{ Rev} \xrightarrow{\sqrt{2}\pi} 7766.01704 \text{ Robs}$$


$$V = 23.320 \text{ Rev} \xrightarrow{\sqrt{115}} 146.5289 \text{ Robs/sec}$$

$$V = 0$$

$$V = 106 \text{ sec}$$

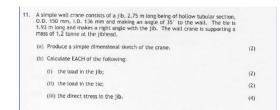
$$V = 4 + at$$

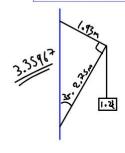
$$V = 146.5289 + 106 a$$

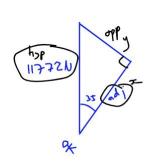
12 kg x 1.2 = 14.4 kg

clockwise mants = anticlock wise moments

Force down = Force up

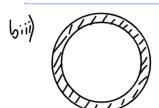

Pivot JA


None	Mass	Force	Distac	Money	Clurk/Ant
Way ht 1	120	2158.2	2.8	6041.96	C
UDL	14.4	141.214	4.4	121.5616	C
RB		*	5	Mount 6041.96 121.5616 52	A
		'		•	


4.4

clackula marts = anticlack wise marks
$$6041.96 + 121.5616 = 5 \times 2 = 1332.9 \text{ N}$$

Force down = Force vp 2158.2+141.214 = RA + RB + 1332.9



$$\frac{\text{Jib}}{\cos \theta} = \frac{\text{adj}}{\text{hyp}}$$

Los
$$35 = \frac{x}{11772}$$
 $\sin 35 = \frac{y}{11772}$

л×0.075²-л×0.068² 3.144734246×ii3

$$T (0.075)^{2} - T (0.068)^{2}$$

$$3.144734246 \times 10^{-3} \text{ m}^{2}$$

$$Stws = \frac{F}{A} = \frac{9643.057}{3.144734246\times10^{-3}m^{2}} = \frac{306(413.462)}{3.144734246\times10^{-3}m^{2}}$$

12. A bulkhead is 5.3 m deep and is flooded to the top on one side only with water of density 1014 kg/m3.

Calculate EACH of the following:

- (a) the hydrostatic pressure at the base of the bulkhead;
- (b) the width of the bulkhead if the hydrostatic force under these conditions is

(3)

(5)

$$q = 5.3x$$

$$a = 5.32$$

|. $(6 \times 10^6 = |014 \times 9.81 \times 5.3 \times \times 2.65$

$$= x = 8.30288998$$